Abou-Kandil, H.; Freiling, G.; Jank, G. On the solution of discrete-time Markovian jump linear quadratic control problems. (English) Zbl 0822.93074 Automatica 31, No. 5, 765-768 (1995). Summary: A necessary and sufficient condition for the existence of a positive- semidefinite solution of the coupled algebraic discrete-time Riccati-like equation occurring in Markovian jump control problems is derived. By verifying a simple matrix inequality, it is shown that such a solution exists and can be obtained as a limit of a monotonic sequence. This leads to a straightforward numerical algorithm for the computation of the solution. An example is given to illustrate the proposed method. Cited in 26 Documents MSC: 93E20 Optimal stochastic control 93C55 Discrete-time control/observation systems 93B40 Computational methods in systems theory (MSC2010) 49N10 Linear-quadratic optimal control problems 49K45 Optimality conditions for problems involving randomness 60J75 Jump processes (MSC2010) Keywords:algebraic discrete-time Riccati equation; Markovian jump control; algorithm PDF BibTeX XML Cite \textit{H. Abou-Kandil} et al., Automatica 31, No. 5, 765--768 (1995; Zbl 0822.93074) Full Text: DOI OpenURL References: [1] Bitmead, R. R.; Gevers, M. R., Riccati difference and differential equations: convergence, monotonicity and stability, (Bittanti, S.; Laub, A. J.; Willems, J. C., The Riccati Equation (1991), Springer: Springer New York), 263-291 [2] Bitmead, R. R.; Gevers, M. R.; Petersen, I. R.; Kaye, R. J., Monotonicity and stabilizability properties of solutions of the Riccati difference equation: propositions, lemmas, theorems, fallacious conjectures and counterexamples, Syst. Control Lett., 5, 309-315 (1985) · Zbl 0567.93059 [3] Blair, W. P.; Sworder, D. D., Feedback control of a class of linear discrete systems with jump parameters and quadratic cost cirteria, Int. J. Control, 21, 833-841 (1975) · Zbl 0303.93084 [4] Bourlès, H.; Joannic, Y.; Mercier, O., \(p\)-Stability and robustness: discrete time case, Int. J. Control, 52, 1217-1239 (1990) · Zbl 0707.93057 [5] Chan, S. W.; Goodwin, G. C.; Sin, K. S., Convergence properties of the Riccati difference equation in optimal filtering of nonstabilizable systems, IEEE Trans. Autom. Control, AC-29, 110-118 (1984) · Zbl 0536.93057 [6] Chizeck, H. J.; Willsky, A. S.; Castanon, D., Discrete-time markovian-jump linear quadratic optimal control, Int. J. Control, 43, 213-231 (1986) · Zbl 0591.93067 [7] De Souza, C. E.; Gevers, M. R.; Goodwin, G. C., Riccati equations in optimal filtering of nonstabilizable systems having singular state transition matrices, IEEE Trans. Autom. Control, AC-31, 831-838 (1986) · Zbl 0604.93059 [8] DeSouza, C. E., On stabilizing properties of solutions of the Riccati difference equation, IEEE Trans. Autom. Control, AC-34, 1313-1316 (1989) · Zbl 0689.93065 [9] Freiling, G.; Jank, G.; Abou-Kandil, H., Generalized Riccati difference and differential equations (1994), Submitted · Zbl 0925.93387 [10] Ji, Y.; Chizeck, H. J., Controllability, observability and discrete-time markovian jump linear quadratic control, Int. J. Control, 48, 481-498 (1988) · Zbl 0669.93007 [11] Kuc̆era, V., The discrete Riccati equation of optimal control, Kybernetika, 8, 430-447 (1972) · Zbl 0245.93033 [12] Payne, H. J.; Silverman, L. M., On the discrete time algebraic Riccati equation, IEEE Trans. Autom. Control, AC-29, 226-234 (1973) · Zbl 0297.93036 [13] Wimmer, H. K., Monotonicity of maximal solutions of algebraic Riccati equations, J. Math. Syst. Control Lett., 2, 219-235 (1992) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.