×

The infimal value functional and the uniformization of hit-and-miss hyperspace topologies. (English) Zbl 0824.54003

Summary: We give necessary and sufficient conditions for the uniformizability of hit-and-miss and proximal hit-and-miss hyperspace topologies defined on the nonempty closed subsets \(\text{CL} (X)\) of a Hausdorff uniform space \((X,{\mathcal U})\). In the case of uniformizability, one can always find a family \({\mathcal F}\) of continuous functions on \(X\) into \([0,1]\) so that the hyperspace topology is the weak topology induced by \(\{m_ f : f \in {\mathcal F}\}\), where for each \(f\), \(m_ f : \text{CL} (X) \to [0,1]\) is the infimal value functional defined by \(m_ f (A) = \inf \{f(x) : x \in A\}\).

MSC:

54B20 Hyperspaces in general topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. · Zbl 0561.49012
[2] Hédy Attouch and Gerald Beer, On the convergence of subdifferentials of convex functions, Arch. Math. (Basel) 60 (1993), no. 4, 389 – 400. · Zbl 0778.49018
[3] Gerald Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15 – 36. · Zbl 0696.46010
[4] Gerald Beer, The slice topology: a viable alternative to Mosco convergence in nonreflexive spaces, Nonlinear Anal. 19 (1992), no. 3, 271 – 290. · Zbl 0786.46006
[5] Gerald Beer, Lipschitz regularization and the convergence of convex functions, Numer. Funct. Anal. Optim. 15 (1994), no. 1-2, 31 – 46. · Zbl 0817.49018
[6] Gerald Beer and Jonathan M. Borwein, Mosco and slice convergence of level sets and graphs of linear functionals, J. Math. Anal. Appl. 175 (1993), no. 1, 53 – 67. · Zbl 0781.46016
[7] Gerald Beer, Alojzy Lechicki, Sandro Levi, and Somashekhar Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl. (4) 162 (1992), 367 – 381. · Zbl 0774.54004
[8] Gerald Beer and Roberto Lucchetti, Weak topologies for the closed subsets of a metrizable space, Trans. Amer. Math. Soc. 335 (1993), no. 2, 805 – 822. · Zbl 0810.54011
[9] Gerald Beer and Robert K. Tamaki, On hit-and-miss hyperspace topologies, Comment. Math. Univ. Carolin. 34 (1993), no. 4, 717 – 728. · Zbl 0787.54013
[10] G. Choquet, Outils topologiques et métriques de l’analyse mathématique, Centre de documentation universitaire et S.E.D.E.S. réunis, Paris, 1966.
[11] A. Di Concilio, S. Naimpally, and P. Sharma, Proximal hypertopologies, preprint.
[12] Giuseppe Di Maio and Ľubica Holá, On hit-and-miss topologies, Rend. Accad. Sci. Fis. Mat. Napoli (4) 62 (1995), 103 – 124 (1996) (English, with English and Italian summaries). · Zbl 1162.54308
[13] V. A. Efremovič, The geometry of proximity. I, Mat. Sbornik N. S. 31(73) (1952), 189 – 200 (Russian).
[14] J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472 – 476. · Zbl 0106.15801
[15] Sebastiano Francaviglia, Alojzy Lechicki, and Sandro Levi, Quasiuniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), no. 2, 347 – 370. · Zbl 0587.54003
[16] C. Hess, Contributions à l’ètude de la mesurabilité, de la loi de probabilité, et de la convergence des multifunctions. Thèse d’état, U.S.T.L. Montpellier, 1986.
[17] J.-L. Joly, Une famille de topologies sur l’ensemble des fonctions convexes pour lesquelles la polarité est bicontinue, J. Math. Pures Appl. (9) 52 (1973), 421 – 441 (1974) (French). · Zbl 0282.46005
[18] Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. · Zbl 0556.28012
[19] Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152 – 182. · Zbl 0043.37902
[20] S. A. Naimpally and B. D. Warrack, Proximity spaces, Cambridge Tracts in Mathematics and Mathematical Physics, No. 59, Cambridge University Press, London-New York, 1970. · Zbl 0206.24601
[21] Harry Poppe, Eine Bemerkung über Trennungsaxiome in Räumen von abgeschlossenen Teilmengen topologischer Räume, Arch. Math. (Basel) 16 (1965), 197 – 199 (German). · Zbl 0127.13004
[22] Harry Poppe, Einige Bemerkungen über den Raum der abgeschlossenen Mengen, Fund. Math. 59 (1966), 159 – 169 (German). · Zbl 0139.40404
[23] Yves Sonntag and Constantin Zălinescu, Set convergences. An attempt of classification, Trans. Amer. Math. Soc. 340 (1993), no. 1, 199 – 226. · Zbl 0786.54013
[24] Wim Vervaat, Random upper semicontinuous functions and extremal processes, Probability and lattices, CWI Tract, vol. 110, Math. Centrum, Centrum Wisk. Inform., Amsterdam, 1997, pp. 1 – 56. · Zbl 0882.60003
[25] R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32 – 45. · Zbl 0146.18204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.