The majorization approach to multidimensional scaling for Minkowski distances. (English) Zbl 0825.92158


91C15 One- and multidimensional scaling in the social and behavioral sciences


Full Text: DOI


[1] ARABIE, P. (1991), ?Was Euclid an Unnecessarily Sophisticated Psychologist??Psychometrika, 56, 567-587. · Zbl 0761.92050 · doi:10.1007/BF02294491
[2] CARROLL, J. D., and WISH, M. (1977), ?Multidimensional Perceptual Models and Measurement Methods,? inHandbook of Perception, Vol. II Eds., E. C. Carterette and M.P. Friedman, New York: Academic Press, 391-447.
[3] DE LEEUW, J. (1977), ?Applications of Convex Analysis to Multidimensional Scaling,? inRecent Developments in Statistics, Eds., J. R. Barra, F. Brodeau, G. Romier and B. van Cutsem, Amsterdam: North-Holland, 133-145.
[4] DE LEEUW, J. (1984), ?Differentiability of Kruskal’s Stress at a Local Minimum,?Psychometrika, 49, 111-113. · doi:10.1007/BF02294209
[5] DE LEEUW, J. (1988), ?Convergence of the Majorization Method for Multidimensional Scaling,?Journal of Classification, 5, 163-180. · Zbl 0692.62056 · doi:10.1007/BF01897162
[6] DE LEEUW, J. (1992),Fitting Distances by Least Squares, unpublished manuscript, Los Angeles: UCLA.
[7] DE LEEUW, J., and HEISER, W. J. (1977), ?Convergence of Correction-Matrix Algorithms for Multidimensional Scaling? inGeometric Representations of Relational Data, Ed., J. C. Lingoes, Ann Arbor, Michigan: Mathesis Press, 735-751.
[8] DE LEEUW, J., and HEISER, W. J. (1980), ?Multidimensional Scaling with Restrictions on the Configuration,? inMultivariate Analysis V, Ed., P. R. Krishnaiah, Amsterdam: North-Holland, 501-522. · Zbl 0468.62054
[9] GREEN, P. E., CARMONE, F. J. Jr, and SMITH, S. M. (1989),Multidimensional Scaling, Concepts and Applications, Boston: Allyn and Bacon.
[10] GROENEN, P. J. F., and HEISER, W. J. (1991),An Improved Tunneling Function for Finding a Decreasing Series of Local Minima, internal report RR-91-06, Leiden: Department of Data Theory.
[11] GUTTMAN, L. (1968), ?A General Nonmetric Technique for Finding the Smallest Coordinate Space for a Configuration of Points,?Psychometrika, 33, 469-506. · Zbl 0205.49302 · doi:10.1007/BF02290164
[12] HEISER, W. J. (1988), ?Multidimensional Scaling with Least Absolute Residuals,? inClassification and Related Methods of Data Analysis, Ed., H. H. Bock, Amsterdam: North-Holland, 455-462.
[13] HEISER, W. J. (1989), ?The City-Block Model for Three-Way Multidimensional Scaling,? inMultiway Data Analysis, Eds., R. Coppi and S. Bolasco, Amsterdam: North-Holland, 395-404.
[14] HEISER, W. J. (1991), ?A Generalized Majorization Method for Least Squares Multidimensional Scaling of Pseudodistances That may be Negative,?Psychometrika, 56, 7-27. · Zbl 0726.92032 · doi:10.1007/BF02294582
[15] HUBERT, L. J., and ARABIE, P. (1986), ?Unidimensional Scaling and Combinatorial Optimization,? inMultidimensional Data Analysis, Eds., J. De Leeuw, W. J. Heiser, J. Meulman and F. Critchley, Leiden: DSWO Press, 181-196.
[16] HUBERT, L. J., ARABIE, P., and HESSON-MCINNIS, M. (1992), ?Multidimensional Scaling in the City-Block Metric: A Combinatorial Approach,?Journal of Classification, 9, 211-236. · doi:10.1007/BF02621407
[17] KRUSKAL, J. B. (1964a), ?Multidimensional Scaling by Optimizing Goodness of Fit to a Non-Metric Hypothesis,?Psychometrika, 29, 1-27. · Zbl 0123.36803 · doi:10.1007/BF02289565
[18] KRUSKAL, J. B. (1964b), ?Nonmetric Multidimensional Scaling: A Numerical Method,?Psychometrika, 29, 115-129. · Zbl 0123.36804 · doi:10.1007/BF02289694
[19] KRUSKAL, J. B. (1977), ?Multidimensional Scaling and Other Methods for Discovering Structure,? inStatistical Methods for Digital Computers, Vol III, Eds., K. Enslein, A. Ralston and H. S. Wilf, New York: Wiley, 296-339.
[20] KRUSKAL, J. B., YOUNG, F. W., and SEERY, J. B. (1977),How to Use KYST-2, a Very Flexible Program to do Multidimensional Scaling and Unfolding, Murray Hill, NJ: AT&T Bell Labs.
[21] MATHAR, R., and GROENEN, P. J. F. (1991), ?Algorithms in Convex Analysis Applied to Multidimensional Scaling,? inSymbolic-Numeric Data Analysis and Learning, Eds., E. Diday, and Y. Lechevallier, Commack, New York: Nova Science, 45-56.
[22] MATHAR, R., and MEYER, R. (1992),Algorithms in Convex Analysis to Fit l p-distance matrices, unpublished report, Aachen: RWTH.
[23] MEULMAN, J. J. (1986),A Distance Approach to Nonlinear Multivariate Analysis, Leiden: DSWO Press.
[24] PETERS, G., and WILKINSON, J. H. (1971), ?The Calculation of Specified Eigenvectors by Inverse Iteration,? inHandbook for Automatic Computation, Vol. II, Linear Algebra, Eds., J. H. Wilkinson and C. Reinsch, Berlin: Springer, 418-439.
[25] ZANGWILL, W. I. (1969),Nonlinear Programming, a Unified Approach, Englewood Cliffs, NJ: Prentice-Hall. · Zbl 0195.20804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.