Cahen, Michel; Gutt, Simone; Rawnsley, John Quantization of Kähler manifolds. III. (English) Zbl 0826.53052 Lett. Math. Phys. 30, No. 4, 291-305 (1994). In two previous papers [J. Geom. Phys. 7, No. 1, 45-62 (1990; Zbl 0719.53044) and Trans. Am. Math. Soc. 337, No. 1, 73-98 (1993; Zbl 0788.53062)] the authors have examined various geometrical methods for the quantization of compact Kähler manifolds.In the paper under review they make the first steps in extending these results to noncompact Kähler manifolds. As an example, the case of an open disk in \(\mathbb{C}\) with Poincaré metric is described in detail. Reviewer: M.Puta (Timişoara) Cited in 2 ReviewsCited in 41 Documents MSC: 53C55 Global differential geometry of Hermitian and Kählerian manifolds 53D50 Geometric quantization Keywords:Berezin quantization; Kähler manifolds; open disk; Poincaré metric Citations:Zbl 0719.53044; Zbl 0788.53062 PDF BibTeX XML Cite \textit{M. Cahen} et al., Lett. Math. Phys. 30, No. 4, 291--305 (1994; Zbl 0826.53052) Full Text: DOI OpenURL References: [1] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Deformation theory and quantization,Lett. Math. Phys. 1, 521–530 (1977). [2] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Deformation theory and quantization,Ann. Phys. 111, 61–110 (1978). · Zbl 0377.53024 [3] Berezin, F. A., Quantisation of Kähler manifold,Comm. Math. Phys. 40, 153 (1975). · Zbl 1272.53082 [4] Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds I: geometric interpretation of Berezin’s quantisation,J. Geom. Phys. 7, 45–62 (1990). · Zbl 0736.53056 [5] Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds. II,Trans. Amer. Math. Soc. 337, 73–98 (1993). · Zbl 0788.53062 [6] Combet, E.,Intégrales exponentielles., Lecture Notes in Mathematics 937, Springer-Verlag, Berlin, Heidelberg, New York, 1982. · Zbl 0509.58019 [7] Moreno, C.,* products onD 1(\(\mathbb{C}\),S 2) and related spectral analysis,Lett. Math. Phys. 7, 181–193 (1983). · Zbl 0528.58014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.