Li, Horng Jaan Oscillation criteria for second order linear differential equations. (English) Zbl 0836.34033 J. Math. Anal. Appl. 194, No. 1, 217-234 (1995). It is considered the differential equation (1) \(|r(t)x']' + c(t)x = 0\), where \(r \in C^1 ([t_0, \infty)\); \((0, \infty))\), \(c \in C ([t_0, \infty); \mathbb{R})\) and \(t_0 \geq 0\). The author gives new oscillation criteria for (1) which improve results of A. Wintner, P. Hartman, I. V. Kamenev, J. Yan and Ch. G. Philos. The criteria are proved by using a generalized Riccati transformation due to Y. H. Yu [Math. Nachr. 153, 137-143 (1991; Zbl 0795.34025)] of the form \[ v(t) = \exp \Bigl( - 2 \int^t f(s)ds \Bigr) r(t) \left( {x'(t) \over x(t)} + f(t) \right), \] where \(f \in C^1 ([t_0, \infty); \mathbb{R})\) is a given function. Reviewer: S.Staněk (Olomouc) Cited in 9 ReviewsCited in 61 Documents MSC: 34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations 34A30 Linear ordinary differential equations and systems Keywords:oscillation criteria; generalized Riccati transformation Citations:Zbl 0795.34025 PDF BibTeX XML Cite \textit{H. J. Li}, J. Math. Anal. Appl. 194, No. 1, 217--234 (1995; Zbl 0836.34033) Full Text: DOI