On simple GP-injective modules. (English) Zbl 0840.16006

A right \(R\)-module \(M\) is called general right principally injective (briefly right GP-injective) if for every \(0\neq a\in R\) there exists a positive integer \(n\) such that \(a^n\neq 0\) and every \(R\)-homomorphism from \(a^nR\) to \(M\) can be extended to one from \(R\) to \(M\). A ring \(R\) is said to be right GP-injective if the right \(R\)-module \(R_R\) is GP-injective. A ring \(R\) is called right quasi-duo if every maximal right ideal is a two-sided ideal.
It is shown that if \(R\) is a right GP-injective ring, then the Jacobson radical of \(R\) is equal to the right singular ideal of \(R\). Also it is proved that if \(R\) is a right quasi-duo ring, then every simple right \(R\)-module is GP-injective if and only if \(R\) is a von Neumann regular ring if and only if \(R\) is a \(V\)-ring.
Reviewer: J.K.Park (Pusan)


16D50 Injective modules, self-injective associative rings
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
Full Text: DOI


[1] Birkenmeier G.F., Proc. Biennial Ohio State-Denison Conference pp 102– (1992)
[2] DOI: 10.1090/S0002-9939-1994-1231028-7
[3] DOI: 10.4153/CJM-1973-070-0 · Zbl 0229.16017
[4] DOI: 10.1080/00927879408825068 · Zbl 0810.16011
[5] Chen J., Math. Japonica 36 pp 1123– (1991)
[6] Faith C., Lecture notes in Mathematics 36 (1967)
[7] GoodearL K.R., Pure and Appl. Math. Ser. 33 36 (1976)
[8] Gupta V., Math. J. Okayama Univ 19 pp 123– (1977)
[9] Hirano Y., Math. J. Okayama, Univ 20 pp 141– (1978)
[10] Hirano Y., Hiroshima Math. J 9 pp 137– (1979)
[11] DOI: 10.1090/S0002-9939-1968-0218398-8
[12] DOI: 10.1016/0021-8693(73)90088-4 · Zbl 0258.16023
[13] Ming R.Y.C., Math. Japonica 19 pp 173– (1974)
[14] Ming R.Y.C., Riv. Math. Univ. Parma 11 pp 101– (1985)
[15] Ming R.Y.C., Riv. Math. Univ. Parma 13 pp 19– (1987)
[16] Ming R.Y.C., J. Math. Kyoto Univ 27 pp 439– (1987)
[17] Nicholson W.K., J. Algebra 27 (1987)
[18] DOI: 10.4153/CMB-1973-051-7 · Zbl 0241.16007
[19] Xue Yao, Pure and Applied Math 21 pp 19– (1985)
[20] DOI: 10.1017/S0017089500030342 · Zbl 0819.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.