×

Vortices for a variational problem related to superconductivity. (English) Zbl 0842.35119

Summary: We study minimizers of Ginzburg-Landau functionals, which depend on a parameter \(\varepsilon\). These functionals appear in superconductivity and two dimensional abelian Higgs models. We study the asymptotic limit, as \(\varepsilon \to 0\), of minimizers and show that the limiting configuration has vortices, which have topological degree one.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35A15 Variational methods applied to PDEs
82D55 Statistical mechanics of superconductors

References:

[1] Bethuel, F.; Brezis, H.; Hélein, F., Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of Variations, Vol. I, 123-148 (1993) · Zbl 0834.35014
[2] Bethuel, F.; Brezis, H.; Hélein, F., Ginzburg-Landau Vortices (1993), Birkhäuser · Zbl 0783.35014
[3] Bethuel, F.; Brezis, H.; Hélhn, F., Limite singulière pour la minimisation de fonctionnelles du type Ginzburg-Landau, C. R. Acad. Sci. Paris, Vol. 314, 891-895 (1992) · Zbl 0773.49003
[7] Boutetde Monvel-Berthier, A.; Georgescu, V.; Purice, R., Sur un problème aux limites de la théorie de Ginzburg-Landau, C. R. Acad. Sci. Paris, Vol. 307, 55-58 (1988) · Zbl 0696.35058
[8] Comtet, A.; Gibbons, G. W., Bogomol’nyi bounds for cosmic strings, Nucl. Phys. B, Vol. 299, 719-733 (1988)
[9] Du, Q.; Gunzburger, M.; Peterson, J., Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Review, Vol. 34, 45-81 (1992) · Zbl 0787.65091
[10] Grisvard, P., Elliptic Problems in non-smooth domains (1985), Pitman: Pitman Marshfields, Mass · Zbl 0695.35060
[11] Jaffe, A.; Taubes, C., Vortices and Monopoles (1980), Birkhäuser · Zbl 0457.53034
[12] Saint-James, D.; Sarma, G.; Thomas, E. J., Type II Superconductivity (1969), Pergamon Press
[14] Spruck, J.; Yang, Y., On multivortices in the electroweak theory II: existence of Bogomol’nyi solutions in, Comm. Math. Phys., Vol. 144, 215-234 (1992) · Zbl 0748.53060
[16] Yang, Y., Boundary value problems of the Ginzburg-Landau equations, Proc. Roy. Soc. Edinburgh, Vol. 114 A, 355-365 (1990) · Zbl 0708.35074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.