Bounds of traces in complete intersections and degrees in the Nullstellensatz. (English) Zbl 0844.14018

Authors’ abstract: In this paper we obtain an effective Nullstellensatz using quantitative considerations of the classical duality theory in complete intersections. Let \(k\) be an infinite perfect field and let \(f_1, \dots, f_{n - r} \in k[X_1, \dots, X_n]\) be a regular sequence with \(d : = \max_j \deg f_j\). Denote by \(A\) the polynomial ring \(k[X_1, \dots, X_r]\) and by \(B\) the factor ring \(k[X_1, \dots, X_n]/(f_1, \dots, f_{n - r})\); assume that the canonical morphism \(A \to B\) is injective and integral and that the Jacobian determinant \(\Delta\) with respect to the variables \(X_{r + 1}, \dots, X_n\) is not a zero divisor in \(B\). Let finally \(\sigma \in B^* : = \operatorname{Hom}_A (B,A)\) be the generator of \(B^*\) associated to the regular sequence.
We show that for each polynomial \(f\) the inequality \(\deg \sigma (\overline f) \leq d^{n - r} (\delta + 1)\) holds \((\overline f\) denotes the class of \(f\) in \(B\) and \(\delta\) is an upper bound for \((n - r)d\) and \(\deg f)\). For the usual trace associated to the (free) extension \(A \hookrightarrow B\) we obtain a somewhat more precise bound: \(\deg \text{Tr} (\overline f) \leq d^{n - r} \deg f\). From these bounds and Bertini’s theorem we deduce an elementary proof of the following effective Nullstellensatz: Let \(f_1, \dots, f_s\) be polynomials in \(k[X_1, \dots, X_n]\) with degrees bounded by a constant \(d \geq 2\); then \(1 \in (f_1, \dots, f_s)\) if and only if there exist polynomials \(p_1, \dots, p_s \in k[X_1, \dots, X_n]\) with degrees bounded by \(4n (d + 1)^n\) such that \(1 = \sum_i p_i f_i\). In the particular cases when the characteristic of the base field \(k\) is zero or \(d = 2\) the sharper bound \(4n d^n\) is obtained.


14M10 Complete intersections
14A05 Relevant commutative algebra
Full Text: DOI


[1] Becker, E., Wörman, T.: On the trace formula for quadratic forms and some applications. To appear in Proc. RASQUAD, Berkeley
[2] Berenstein, C., Struppa, D.: Recent improvements in the Complexity of the Effective Nullstellensatz. Linear Algebra Its Appl.157, 203–215 (1991) · Zbl 0759.13012 · doi:10.1016/0024-3795(91)90115-D
[3] Berenstein, C., Yger, A.: Bounds for the degrees in the division problem. Mich. Math. J.37, 25–43 (1990) · Zbl 0702.32006 · doi:10.1307/mmj/1029004064
[4] Brownawell, D.: Bounds for the degrees in the Nullstellensatz. Ann. Math. Second Series126(3), 577–591 (1987) · Zbl 0641.14001 · doi:10.2307/1971361
[5] Caniglia, L., Galligo, A., Heintz, J.: Some new effectivity bounds in computational geometry. Proc. 6th Int. Conf. Applied Algebra, Algebraic Algorithms and Error Correcting Codes AAECC-6, Roma 1988, Lecture Notes in Computer Sciences. Berlin, Hiedelberg, New York: Springer vol.357, 131–151 (1989) · Zbl 0685.68044
[6] Cardinal, J.-P.: Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux. Thesis Université de Rennes (1993)
[7] Dickenstein, A., Giusti, M., Fitchas, N., Sessa, C.: The membership problem for unmixed polynomial ideals is solvable in single exponential time. Discrete Appl. Math.33, 73–94 (1991) · Zbl 0747.13018 · doi:10.1016/0166-218X(91)90109-A
[8] Dickenstein, A., Sessa, C.: An effective residual criterion for the membership problem in \(\mathbb{C}\)[z1,..., zn]. J. Pure Appl. Algebra74, 149–158 (1991) · Zbl 0754.14034 · doi:10.1016/0022-4049(91)90080-L
[9] Dubé, T.: A Combinatorial Proof of the Effective Nullstellensatz. J. Symb. Comp.15, 277–296 (1993) · Zbl 0783.13023 · doi:10.1006/jsco.1993.1020
[10] Fitchas, N., Galligo, A.: Nullstellensatz effectif et conjecture de Serre (théorème de Quillen-Suslin) pour le Calcul Formel. Math. Nachr.149, 231–253 (1990) · Zbl 0729.14001 · doi:10.1002/mana.19901490118
[11] Fitchas, N., Giusti, M., Smietanski, F.: Sur la complexité du théorème des zéros. Preprint Ecole Polytechnique Palaiseau (1992)
[12] Giusti, M., Heintz, J.: La détermination des points isolés et de la dimension d’une variété algébrique peut se faire en temps polynomial. To appear in Proc. Int. Meeting on Commutative Algebra, Cortona, 1991
[13] Giusti, M., Heintz, J., Sabia, J.: On the efficiency of effective Nullstellensätze. Comput. Complexity3, 56–95 (1993) · Zbl 0824.68051 · doi:10.1007/BF01200407
[14] Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theoret. Comput. Sci.24, 239–277 (1983) · Zbl 0546.03017 · doi:10.1016/0304-3975(83)90002-6
[15] Iversen, B.: Generic Local Structures in Commutative Algebra. Lect. Notes in Math. vol.310. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0247.13001
[16] Jouanolou, J.-P.: Théorèmes de Bertini et applications. Progress in Math. vol.42. Basel: Birkhäuser (1983)
[17] Kreuzer, M., Kunz, E.: Traces in strict Frobenius algebras and strict complete intersections. J. Reine Angew. Math.381, 181–204 (1987) · Zbl 0626.13009
[18] Kollár, J.: Sharp effective Nullstellensatz. J. AMS1, 963–975 (1988) · Zbl 0682.14001
[19] Kunz, E.: Kälher Differentials. Adv. Lect. in Math. Vieweg Verlag (1986) · Zbl 0587.13014
[20] Logar, A.: A computational proof of the Noether normalization lemma. Proc. 6th Int. Conf. Applied Algebra, Algebraic Algorithms and Error Correcting Codes AAECC-6, Roma 1988, Lecture Notes in Computer Sciences vol.357, pp. 259–273. Berlin, Heidelberg, New York: Springer 1989
[21] Matsumura, H.: Commutative Algebra. Benjamin (1970)
[22] Matsumura, H.: Commutative ring theory. Cambridge Studies in Adv. Math. vol.8. Cambridge University Press (1989) · Zbl 0666.13002
[23] Mumford, D.: The Red Book of Varieties and Schemes. Lect. Notes in Math. vol.1358. Berlin, Heidelberg, New York: Springer 1988 · Zbl 0658.14001
[24] Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting real zeros in the multivariate case. To appear in Proc. MEGA 92 · Zbl 0806.14042
[25] Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten. J. Reine Angew. Math.278, 174–190 (1975) · Zbl 0316.13003
[26] Teissier, B.: Résultats récents d’algèbre commutative effective. Séminaire Bourbaki 1989–1990, Astérisque vol.189–190, 107–131 (1991)
[27] Vasconcelos, W.: Jacobian Matrices and Constructions in Algebra. Proc. 9th Int. Conf. Applied Algebra, Algebraic Algorithms and Error Correcting Codes AAECC-9, New Orleans, 1991, LN Comput. Sci. vol.539, pp. 48–64. Berlin, Heidelberg, New York: Springer 1992 · Zbl 0782.13020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.