×

Mathematical and numerical aspects of wave propagation. Proceedings of the third international conference, Mandelieu-La Napoule, France, April 24–28, 1995. (English) Zbl 0846.00038

Philadelphia, PA: Society for Industrial and Applied Mathematics. xii, 808 p. (1995).

Show indexed articles as search result.

The articles of this volume will be reviewed individually. The second conference (1993) has been reviewed (see Zbl 0809.00018).
Indexed articles:
Martin, P. A., Multiple scattering: An invitation, 3-16 [Zbl 0873.35058]
Pichot, Christian; Papiernik, Albert, Numerical methods in electromagnetic scattering and radiation, 17-31 [Zbl 0870.65120]
Komech, A., Asymptotics of solutions to nonlinear wave equations, 32-46 [Zbl 0871.35062]
Sylvester, John, Inverse problems via layer stripping, 48-55 [Zbl 0877.34016]
Hoffman, David K.; Kouri, Donald J., Distributed approximating functionals: A new approach to approximating functions and their derivatives, 56-83 [Zbl 0871.41012]
Frank, A. M., Particle method for water waves simulation, 96-103 [Zbl 0874.76059]
Zhevandrov, P. N., Justification of some ray method approximations for trapped water waves, 104-111 [Zbl 0874.76012]
Onishi, K.; Kobayashi, K., A zoom-in technique for shallow water equations, 112-118 [Zbl 0877.76036]
Chernykh, Gennadij G.; Voropaeva, Olga F.; Zudin, Andrej N., Numerical simulation of internal waves generated by a local density perturbation in stratified medium, 119-128 [Zbl 0876.76054]
Bachelot, Alain; Lubet, Valérie, On the coupling of boundary element and finite element methods for a time problem, 130-139 [Zbl 0870.65121]
Filipe, M.; Forestier, A.; Ha-Duong, T., A time-dependent acoustic scattering problem, 140-150 [Zbl 0877.76067]
Bachelot, Alain; Lange, Virginie, Time dependent integral method for Maxwell’s system, 151-159 [Zbl 0872.65110]
Gay, Jean; Haugazeau, Yves; Heliot, Jean-Philippe, Integral equation for the system of Maxwell. Finite elements of surface for their links with thin wires, 160-169 [Zbl 0871.65104]
de La Bourdonnaye, Armel; Tolentino, Marc, Convergence of the approximation of a wave, by oscillatory functions in the limit of high frequencies, 170-177 [Zbl 0870.65013]
Abboud, Toufic; Nédélec, Jean-Claude; Zhou, Bin, Improvement of the integral equation method for high frequency problems, 178-187 [Zbl 0870.65122]
Chandler-Wilde, S. N., Boundary value problems for the Helmholtz equation in a half-plane, 188-197 [Zbl 0870.35031]
Duhamel, D., Static regularization of hypersingular integral equations in acoustics, 198-207 [Zbl 0874.76078]
Chandler-Wilde, S. N.; Ross, C. R., Scattering by one-dimensional rough surfaces, 208-215 [Zbl 0869.35069]
Roy, Arabinda, Diffraction of elastic waves by an elliptic crack, 216-228 [Zbl 0874.73018]
Harari, Isaac; Turkel, Eli, Reducing spurious wave dispersion, reflection and anisotropy in finite difference computation, 230-239 [Zbl 0869.76054]
Sei, Alain; Symes, W. W., Computational analysis of finite difference schemes for the wave equation in heterogeneous media, 240-249 [Zbl 0874.73073]
Cohen, Gary; Monk, Peter, Efficient edge finite element schemes in computational electromagnetism, 250-259 [Zbl 0870.65117]
Millot, Florence; Collino, Francis; Joly, Patrick, Fictitious domain method for unsteady problems: Application to electromagnetic scattering, 260-269 [Zbl 0870.65123]
Cohen, Gary; Joly, Patrick; Tordjman, Nathalie, Higher order triangular finite elements with mass lumping for the wave equation, 270-279 [Zbl 0870.65085]
Ettouney, Mohammed M.; Daddazio, Raymond P.; Abboud, Najib N., Scale independent elements for dynamic analysis of vibrating systems, 280-288 [Zbl 0875.73122]
Seriani, Géza; Priolo, Enrico; Pregarz, Alessandro, Modelling waves in anisotropic media by a spectral element method, 289-298 [Zbl 0879.73082]
Vigdergauz, Shmuel; Givoli, Dan, A finite element method for wave problems with geometrical singularities, 299-307 [Zbl 0874.73068]
Bermúdez, Alfredo; Durán, Ricardo; Rodríguez, Rodolfo, A finite element method for elastoacoustic and hydroelastic vibrations problems, 308-317 [Zbl 0879.73061]
Anné, Laurent; Bamberger, Alain; Brac, Jean; Duclos, Pierre, Generation of a realistic 3D synthetic seismic dataset. Numerical and computational aspects, MARMOUSI 3D, 318-327 [Zbl 0875.73043]
Song, Hua; Zhang, Guanquan, Wavefield splitting and extrapolation of the two-dimensional plasma wave equation, 328-337 [Zbl 0874.76098]
Albertsen, Niels Christian; Chesneaux, Jean-Marie; Christiansen, Soeren; Wirgin, Armand, Evaluation of round-off error by interval and stochastic arithmetic methods in a numerical application of the Rayleigh theory to the study of scattering from an uneven boundary, 338-346 [Zbl 0877.76066]
Yang, Dequan; Han, Qingshu; Wunenboyin, Investigation of the diffraction and vortex phenomenon of a dam break wave, 347-354 [Zbl 0875.76355]
Issautier, Didier; Poupaud, Frédéric; Cioni, Jean-Pierre; Fezoui, Loula, A 2-D Vlasov-Maxwell solver on unstructured meshes, 355-371 [Zbl 0874.76061]
Kalashnikov, Vyacheslav V.; Kostornoj, Sergej D., Problem of ideal liquid flowing around arbitrarily positioned bodies: Numerical solution and application to hydraulic machines, 372-383 [Zbl 0875.76476]
Kawarada, Hideo; Koshigoe, Hideyuku; Sasamoto, Akira, On penetration phenomenon of magnetic field into superconducting materials – Modeling and simulation, 385-394 [Zbl 0870.65118]
Saillard, M., Numerical study of resonant phenomena in electromagnetism, 395-403 [Zbl 0870.65124]
Joly, Patrick; Vacus, Olivier, Numerical simulations of electromagnetic wave propagation in ferromagnetic materials, 404-411 [Zbl 0871.65105]
Abboud, T.; Mathis, V.; Nédélec, J. C., Diffraction of an electromagnetic travelling wave by a periodic structure, 412-421 [Zbl 0870.65125]
Svobodny, Thomas, Analysis and computation of a mean-field dynamo model, 422-429 [Zbl 0874.76096]
Cessenat, Michel, Scattering of a stationary wave by a thin obstacle with a high conductivity, 431-438 [Zbl 0870.35074]
Abboud, Toufic; Ammari, Habib, Diffraction at a curved grating. TM and TE cases, homogenization, 439-448 [Zbl 0872.35010]
Gilbert, R.; Gnélécoumbaga, S.; Panasenko, G., Wave propagation in a system: Porous media with Dirichlet’s condition on the boundary – continuous media, 449-455 [Zbl 0874.76082]
Hedstrom, Gerald, Viscoelastic waves and multiple scales, 456-463 [Zbl 0874.73008]
Barucq, Hélène, Maxwell’s system with a one-parameter family of first-order absorbing boundary conditions, 465-473 [Zbl 0872.35110]
Hagstrom, Thomas, On the convergence of local approximations to pseudodifferential operators with applications, 474-482 [Zbl 0874.35140]
Tuomela, J., Discrete absorbing boundary conditions for one-dimensional wave equation, 483-488 [Zbl 0874.35064]
Bielak, Jacobo; Kallivokas, Loukas F.; Xu, Jifeng; Monopoli, Richard, Finite element absorbing boundary for the wave equation in a halfplane with an application to engineering seismology, 489-498 [Zbl 0879.73062]
Levy, M. F., Non-local boundary conditions for radiowave propagation, 499-505 [Zbl 0874.35120]
Meade, Douglas B.; Peterson, Andrew F.; Piellusch-Castle, Catherine, Derivation and comparison of radiation boundary conditions for the two-dimensional Helmholtz equation with non-circular artificial boundaries, 506-514 [Zbl 0870.35009]
Petkov, Vesselin; Stoyanov, Luchezar, Sojourn times of reflecting rays and singularities of the scattering kernel, 516-525 [Zbl 0870.35076]
Cutzach, Pierre-Marie; Hazard, Christophe, Maxwell’s equations in a two-layered medium, 526-535 [Zbl 0874.35117]
Bonnet Ben Dhia, Anne-Sophie; Powell, Blaise, A method for solving some problems set in a non-compactly perturbed half plane, 536-543 [Zbl 0869.35008]
Alves, Carlos; Ha Duong, Tuong, Numerical experiments on the resonance poles associated to acoustic and elastic scattering by a plane crack, 544-553 [Zbl 0874.73077]
Carcione, José M.; Seriani, Geza, Propagation of axially symmetric waves in infinitely long composite cylinder systems, 555-563 [Zbl 0882.73016]
Joly, P.; Pedreira, D. G., A method to compute guided modes in open stratified waveguides, 564-573 [Zbl 0876.35115]
Duterte, Jean; Joly, Patrick, Surface waves guided by a cylindrical perturbation of an elastic homogeneous half-space, 574-583 [Zbl 0881.73030]
Garnier, Josselin; Fouque, Jean-Pierre, Amplification of incoherent light with wide spectrum, 584-593 [Zbl 0874.35119]
Vassallo, Charles, Finite difference analysis of vectorial transversal fields in optical waveguides, 594-603 [Zbl 0870.65127]
Glushkov, Evgenij; Glushkova, Natal’ya; Kirillova, Evgeniya, Normal mode diffraction in elastic layered waveguides; resonances and energy vortices, 604-612 [Zbl 0874.73016]
Merzon, Anatolij E., On Ursell’s problem, 613-623 [Zbl 0874.76011]
Kuznetsov, N. G., Trapped modes of surface and internal waves in a channel occupied by two-layer fluid, 624-633 [Zbl 0874.76015]
Chen, Y. M.; Kim, T. G., A parallel algorithm for inverse scattering problems of Maxwell’s equations on hypercubes, 635-643 [Zbl 0870.65126]
Makhmutova, M., Fast algorithms for solving the direct and inverse problems of ionosphere sounding, 644-651 [Zbl 0870.65119]
Benamou, Jean-David, A domain decomposition method for the optimal control of systems governed by the Helmholtz equation, 653-662 [Zbl 0870.65051]
Ghanemi, S.; Collino, F.; Joly, P., Domain decomposition method for harmonic wave equations, 663-672 [Zbl 0870.65109]
Douglas, Jim jun.; Pereira, Felipe; Santos, Juan E., A parallelizable approach to the simulation of waves in dispersive media, 673-682 [Zbl 0879.73081]
Kern, M.; Versteeg, R.; Symes, W. W., Task level parallelization for seismic modeling and inversion, 684-693 [Zbl 0875.73386]
Bao, Gang, An inverse diffraction problem in periodic structures, 694-703 [Zbl 0874.35128]
Plessix, R. E.; Chavent, G.; De Roeck, Y. H., A quantitative Kirchhoff migration to estimate the 2D velocity distribution, 704-712 [Zbl 0877.73014]
Chavent, Guy; Clément, François; Gómez, Susana, Waveform inversion by MBTT formulation, 713-722 [Zbl 0877.73013]
Cordier, S.; Degond, P.; Markowich, P.; Schmeiser, C., Quasineutral limit of travelling waves for the Euler-Poisson model, 724-733 [Zbl 0874.76097]
Filimonov, Igor; Kidin, Nickolai, The influence of an electromagnetic field on the SHS process in the spin mode, 734-743 [Zbl 0873.35094]
Chen, Shuxing, M-D singularity structure of solutions to a quasilinear system, 744-753 [Zbl 0873.35050]
Bakhvalov, N. S.; Eglit, M. E., Averaging of the wave propagation dynamics in weakly viscous mixtures, 759-761 [Zbl 0875.76085]
Gilman, O. A.; Grimshaw, R.; Stepanyants, Yu. A., Analytical and numerical investigations of the structure and dynamics of nonlinear waves in a rotating ocean, 766-768 [Zbl 0875.76652]
Matignon, Denis; d’Andréa-Novel, Brigitte, Spectral and time-domain consequences of an integro-differential perturbation of the wave PDE, 769-771 [Zbl 0875.35066]
Okada, Masami; Ozawa, Kazufumi, Numerical study on wave propagation in branched lattice of LC circuit, 774-776 [Zbl 0870.65113]
Caviglia, G.; Morro, A., Two approaches to wave propagation in dissipative anisotropic solids, 780-782 [Zbl 0875.73047]
Kolikovskij, A. G.; Sveshnikova, E. I., Shock waves in a weakly anisotropic elastic media, 791-792 [Zbl 0875.73040]
Mirabel, Xavier; Marsili, Pierre-Marie, Optimal control in impedance tomography, 793-795 [Zbl 0889.49025]
Shardakov, Igor; Golotina, Ludmila, On the approach to solution of three-dimensional acoustic gas oscillation problem in regions with complex geometry, 801-803 [Zbl 0875.76570]

MSC:

00B25 Proceedings of conferences of miscellaneous specific interest
76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics
65-06 Proceedings, conferences, collections, etc. pertaining to numerical analysis

Citations:

Zbl 0809.00018
PDF BibTeX XML Cite