×

Phase space reduction for star-products: An explicit construction for \(\mathbb{C} P^ n\). (English) Zbl 0849.58035

The authors give an explicit formula for a star-product on the complex projective space and the domain \(SU(1,n)/SU(1) \times U(n)\) which in addition is shown to be the Marsden-Weinstein reduction of a star product equivalent to the usual Wick product on the flat Kähler manifold \(\mathbb{C}^{n + 1} \backslash \{0\}\).

MSC:

53D50 Geometric quantization
53B35 Local differential geometry of Hermitian and Kählerian structures
81S10 Geometry and quantization, symplectic methods
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] AbrahamR. and MarsdenJ. E.,Foundations of Mechanics, 2nd edn, Addison-Wesley, Reading, Mass., 1985.
[2] BayenF., FlatoM., FronsdalC., LichnerowiczA. and SternheimerD., Deformation theory and quantization.Ann. of Physics 111 (1978), part I: 61-110, part II: 111-151. · Zbl 0377.53024
[3] BerezinF., Quantization,Izv. Mat. Nauk 38 (1974), 1109-1165.
[4] Bordemann, M., Meinrenken, E. and Römer, H., Total space quantization of Kähler manifolds, preprint Univ. Freiburg THEP 93/5 (revised version to appear).
[5] CahenM., DeWildeM. and GuttS., Local cohomology of the algebra ofC ?-functions on a connected manifold,Lett. Math. Phys. 4 (1980), 157-167. · Zbl 0453.58026
[6] CahenM., GuttS. and RawnsleyJ., Quantization of Kähler manifolds I,J. Geom. Phys. 7 (1990), 45-62. · Zbl 0736.53056
[7] CahenN., GuttS. and RawnsleyJ., Quantization of Kähler manifolds II,Trans. Amer. Math. Soc. 337 (1993), 73-98. · Zbl 0788.53062
[8] CahenM., GuttS. and RawnsleyJ., Quantization of Kähler manifolds III,Lett. Math. Phys. 30 (1994), 291-305. · Zbl 0826.53052
[9] DeWildeM. and LecomteP. B. A., Existence of star-products and of formal deformations of the Poisson Lie Algebra of arbitrary symplectic manifolds,Lett. Math. Phys. 7 (1983), 487-496. · Zbl 0526.58023
[10] Fedosov, B., Formal quantization, inSome Topics of Modern Mathematics and Their Applications to Problems of Mathematical Physics, Moscow, 1985, pp. 129-136.
[11] FedosovB., A simple geometrical construction of deformation quantization,J. Differential Geom. 40 (1994), 213-238. · Zbl 0812.53034
[12] FedosovB., Reduction and eigenstates in deformation quantization, in Demuth, Schrohe, Schulze (eds),Pseudodifferential Calculus and Mathematical Physics, Academiæ Verlag, Berlin, 1994; Preprint: Moscow Institute of Science and Technology, 1993.
[13] GerstenhaberM. and SchackS. D., Algebraic cohomology and deformation theory, in M.Hazewinkel and M.Gerstenhaber (eds.),Deformation Theory of Algebras and Structures and Applications, Kluwer Acad. Publ. Dordrecht, 1988.
[14] GriffithsP. and HarrisJ.,Principles of Algebraic Geometry, Wiley, New York, 1978.
[15] GuttS., An explicit *-product on the cotangent bundle of a Lie group,Lett. Math. Phys. 7 (1983), 249-258. · Zbl 0522.58019
[16] HelgasonS.,Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
[17] MorenoC. and Ortega-NavarroP., *-products on 371-1,S 2 and related spectral analysis,Lett. Math. Phys. 7 (1983), 181-193. · Zbl 0528.58014
[18] MorenoC., *-products on some Kähler manifolds,Lett. Math. Phys. 11 (1986), 361-372. · Zbl 0618.53049
[19] MorenoC., Geodesic symmetries and invariant star products on Kähler symmetric spaces,Lett. Math. Phys. 13 (1987), 245-257. · Zbl 0628.58018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.