×

Algorithmic number theory. Second international symposium, ANTS-II, Talence, France, May 18–23, 1996. Proceedings. (English) Zbl 0852.00023

Lecture Notes in Computer Science 1122. Berlin: Springer. ix, 403 p. (1996).

Show indexed articles as search result.

The articles of this volume will be reviewed individually. The 1st conference (1994) has been reviewed (see Zbl 0802.00018).
Indexed articles:
Adleman, Leonard M.; Huang, Ming-Deh A., Counting rational points on curves and abelian varieties over finite fields, 1-16 [Zbl 0898.11045]
Belabas, K., Computing cubic fields in quasi-linear time, 17-25 [Zbl 0903.11031]
Bernstein, Daniel J., Fast ideal arithmetic via lazy localization, 27-34 [Zbl 0903.11032]
Brent, Richard P.; te Riele, Herman J. J.; van der Poorten, Alfred J., A comparative study of algorithms for computing continued fractions of algebraic numbers, 35-47 [Zbl 0899.11065]
Cohen, Henri; Diaz y Diaz, Francisco; Olivier, Michel, Computing ray class groups, conductors and discriminants, 49-57 [Zbl 0898.11046]
Couveignes, Jean-Marc, Computing \(l\)-isogenies using the \(p\)-torsion, 59-65 [Zbl 0903.11030]
Daberkow, M.; Pohst, M. E., On computing Hilbert class fields of prime degree, 67-74 [Zbl 0899.11062]
Denny, Thomas F.; Müller, Volker, On the reduction of composed relations from the number field sieve, 75-90 [Zbl 0943.11056]
Dummit, David S.; Hayes, David R., Checking the \({\mathfrak p}\)-adic Stark conjecture when \({\mathfrak p}\) is archimedean, 91-97 [Zbl 0906.11058]
Elkenbracht-Huizing, Marije, A multiple polynomial general number field sieve, 99-114 [Zbl 0899.11060]
Fermigier, Stéfane, Construction of high-rank elliptic curves over \(\mathbb Q\) and \(\mathbb Q(t)\) with non-trivial 2-torsion. (Extended abstract), 115-120 [Zbl 0890.11020]
Fhlathúin, Bríd ní, The height on an abelian variety, 121-131 [Zbl 0919.11047]
Fieker, C.; Pohst, M. E., On lattices over number fields, 133-139 [Zbl 0930.11090]
Ford, David, Minimum discriminants of primitive sextic fields, 141-143 [Zbl 0924.11100]
Ford, David; Havas, George, A new algorithm and refined bounds for extended gcd computation, 145-150 [Zbl 0924.11099]
Gaál, István, Application of Thue equations to computing power integral bases in algebraic number fields, 151-155 [Zbl 0891.11062]
Gebel, Josef; Pethő, Attila; Zimmer, Horst G., Computing \(S\)-integral points on elliptic curves, 157-171 [Zbl 0899.11012]
Giesbrecht, Mark, Probabilistic computation of the Smith normal form of a sparse integer matrix, 173-186 [Zbl 0886.65045]
Lauter, Kristin, Ray class field constructions of curves over finite fields with many rational points, 187-195 [Zbl 0935.11022]
Lercier, Reynald, Computing isogenies in \(\mathbb{F}_{2^n}\), 197-212 [Zbl 0911.11029]
Louboutin, Stéphane, A computational technique for determining relative class numbers of CM-fields, 213-216 [Zbl 0897.11037]
McKee, James; Pinch, Richard, Old and new deterministic factoring algorithms, 217-224 [Zbl 0957.11054]
Meyer, Shawna M.; Sorenson, Jonathan P., Efficient algorithms for computing the Jacobi symbol. (Extended abstract), 225-239 [Zbl 0891.11063]
Niklasch, Gerhard, The number field database on the World Wide Web server http://hasse.mathematik.tu-muenchen.de/, 241-242 [Zbl 1006.11505]
Paulus, Sachar, An algorithm of subexponential type computing the class group of quadratic orders over principal ideal domains, 243-257 [Zbl 0917.11063]
Pohst, M. E., Computational aspects of Kummer theory, 259-272 [Zbl 0894.11051]
Pohst, M. E.; Schörnig, M., On integral basis reduction in global function fields, 273-282 [Zbl 0898.11048]
Poonen, Bjorn, Computational aspects of curves of genus at least 2, 283-306 [Zbl 0891.11037]
Rössner, Carsten; Seifert, Jean-Pierre, The complexity of approximate optima for greatest common divisor computations, 307-322 [Zbl 1021.68107]
Scheidler, R., Compact representation in real quadratic congruence function fields, 323-336 [Zbl 0935.11049]
Schirokauer, Oliver; Weber, Damian; Denny, Thomas, Discrete logarithms: The effectiveness of the index calculus method, 337-361 [Zbl 0895.11054]
Smart, N. P., How difficult is it to solve a Thue equation?, 363-373 [Zbl 0896.11009]
Stein, Andreas, Elliptic congruence function fields, 375-384 [Zbl 0899.11055]
Tsfasman, Michael A., Algebraic geometry lattices and codes, 385-389 [Zbl 0939.11024]
Weber, Damian, Computing discrete logarithms with the general number field sieve, 391-403 [Zbl 0899.11061]

MSC:

00B25 Proceedings of conferences of miscellaneous specific interest
11-06 Proceedings, conferences, collections, etc. pertaining to number theory
11Yxx Computational number theory
68Q25 Analysis of algorithms and problem complexity

Citations:

Zbl 0802.00018
Full Text: DOI