×

Deformations of the algebra of functions of a symplectic manifold. Comparison between Fedosov and de Wilde, Lecomte. (Déformations de l’algèbre des fonctions d’une variété symplectique: Comparaison entre Fedosov et De Wilde, Lecomte.) (French) Zbl 0852.58033

M. de Wilde and P. B. A. Lecomte in their papers in Ann. Inst. Fourier 35, No. 2, 117-143 (1985; Zbl 0526.58023), Lett. Math. Phys. 7, 487-496 (1983; Zbl 0566.58039) and B. V. Fedosov in his paper “Formal quantization” [Some topics of Modern Mathematics and their applications to problems of mathematical physics, Moscow, 129-136 (1985)] have proved that if \(M\) is a symplectic manifold, then there exists a deformation \(*_t\) of the product giving place to the symplectic Poisson brackets. The classifications of the classes of isomorphy of the above deformations \(*_t\) are given by Fedosov and also by De Wilde and Lecomte.
The purpose of the present paper is to compare the applied methods, the corresponding classifications and also to explain the effect of a change of formal parameter \(t \to \sum^\infty_1 a_nt^n\) with \(a_1\) invertible.

MSC:

53D55 Deformation quantization, star products
53D05 Symplectic manifolds (general theory)
53D17 Poisson manifolds; Poisson groupoids and algebroids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. De Wilde and P.B.A. Lecomte.Existence of star-products on exact symplectic manifolds. Annales de l’Institut Fourier,XXXV, 2 (1985), 117–143. · Zbl 0536.58038
[2] M. De Wilde and P.B.A. Lecomte.Existence of star-products and of formal deformations in Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys.,7 (1983), 487–496. · Zbl 0526.58023
[3] M. De Wilde and P.B.A. Lecomte.Existence of star-products revisited. Suppl. n. 1, Note di Mathematica,X (1990), 205–216. · Zbl 0776.53023
[4] B.V. Fedosov.Formal quantization. in: Some topics of Modern Mathematics and their applications to problems of mathematical physics, Moscow, 1985, pp. 129–136.
[5] B.V. Fedosov.A simple geometrical construction of deformation quantization. J. Diff. Geom.,40 2 (1994), 213–238. · Zbl 0812.53034
[6] J. Giraud.Cohomologie non abélienne. Grundlehren 179, Springer-Verlag, 1971. · Zbl 0226.14011
[7] R. Godement.Théorie des faisceaux. Publ. Inst. Math. Univ. de Strasbourg, Paris: Hermann, 1985.
[8] O.M. Neroslavsky et A.T. Vlassov. Sur les déformations de l’algèbre des fonctions d’une variété symplectique. CR Acad. Sci. Paris,292 1 (1981), 71–73. · Zbl 0471.58034
[9] J. Vey. Déformation du crochet de Poisson sur une variété symplectique. Comm. Math. Helv.,50 (1975), 421–454. · Zbl 0351.53029
[10] A. Weinstein.Deformation quantization. Séminaire Bourbaki 789, (juin 1994), Astérisque.
[11] SGA4.Théorie des topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963/64, dirigé par M. Artin, A. Grothendieck, et J. L. Verdier: vol. 2: Lecture Notes in Math. 270, Springer-Verlag 1972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.