Andersen, Jørgen Ellegaard (ed.); Dupont, Johan (ed.); Pedersen, Henrik (ed.); Swann, Andrew (ed.) Geometry and physics. Proceedings of the conference at Aarhus University, Aarhus, Denmark, 1995. (English) Zbl 0855.00020 Lecture Notes in Pure and Applied Mathematics. 184. New York, NY: Marcel Dekker. xii, 745 p. (1997). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Atiyah, Michael, Geometry and physics: Where are we going?, 1-7 [Zbl 0865.53063]Fukaya, Kenji; Seidel, Paul, Floer homology, \(A_ \infty\)-categories and topological field theory, 9-32 [Zbl 0867.58012]Jeffrey, Lisa C., Quantum field theory, equivariant cohomology, symplectic geometry and moduli spaces of vector bundles on Riemann surfaces, 33-57 [Zbl 0896.58001]Szabó, Zoltán, Notes on Seiberg-Witten invariants, 59-70 [Zbl 0872.57026]Thaddeus, Michael, An introduction to the topology of the moduli space of stable bundles on a Riemann surface, 71-99 [Zbl 0869.58006]Bar-Natan, Dror; Stoimenow, Alexander, The fundamental theorem of Vassiliev invariants, 101-134 [Zbl 0878.57004]Bott, Raoul, Configuration spaces and imbedding problems, 135-140 [Zbl 0874.57006]Segal, Graeme, Topology of the space of \(SU(2)\)-monopoles in \(\mathbb{R}^ 3\), 141-147 [Zbl 0870.57046]Tian, Gang, Recent progress on Kähler-Einstein metrics, 149-155 [Zbl 0884.53004]Eschenburg, J.-H.; Wang, McKenzie Y., The ODE system arising from cohomogeneity one Einstein metrics, 157-165 [Zbl 0920.53025]LeBrun, Claude, Einstein metrics on complex surfaces, 167-176 [Zbl 0876.53024]Yau, Shing-Tung; Zaslow, Eric, BPS states as symplectic invariants from string theory, 177-186 [Zbl 0866.58019]Freed, Daniel S., Determinant line bundles revisited, 187-195 [Zbl 0868.58080]Masbaum, G., On representations of spin mapping class groups arising in spin TQFT, 197-207 [Zbl 0873.57011]Fukaya, Kenji, The symplectic \(S\)-cobordism conjecture: A summary, 209-219 [Zbl 0871.57032]Karshon, Yael, Hamiltonian torus actions, 221-230 [Zbl 0868.58029]Alekseev, A. Yu., A new proof of the convexity theorem for the Poisson-Lie moment map, 231-236 [Zbl 0866.58028]Ohta, Hiroshi; Ono, Kaoru, Symplectic 4-manifolds with \(b_ 2^ +=1\), 237-244 [Zbl 0873.53018]Joyce, Dominic, Compact manifolds with exceptional holonomy, 245-252 [Zbl 0868.53026]Kumar, Shrawan, Fusion product of positive level representations and Lie algebra homology, 253-259 [Zbl 0874.17029]Merkulov, Sergey A., Affine connections on involutive \(G\)-structures, 261-274 [Zbl 0876.53014]Fino, A.; Salamon, S., Observations on the topology of symmetric spaces, 275-286 [Zbl 0886.53038]Biquard, Olivier; Gauduchon, Paul, Hyperkähler metrics on cotangent bundles of Hermitian symmetric spaces, 287-298 [Zbl 0879.53051]Poon, Y. S., Decomposable self-dual manifolds, 299-306 [Zbl 0876.53025]Tod, K. P., The \(SU(\infty)\)-Toda fields equation and special four-dimensional metrics, 307-312 [Zbl 0876.53026]Dancer, Andrew; Swann, Andrew, The structure of quaternionic Kähler quotients, 313-320 [Zbl 0869.53042]Axelrod, Scott, Overview and warmup example for perturbation theory with instantons, 321-338 [Zbl 0867.58011]Bisch, Dietmar; Jones, Vaughan, A note on free composition of subfactors, 339-361 [Zbl 0968.46045]Lawrence, R. J., Witten-Reshetikhin-Turaev invariants of 3-manifolds as holomorphic functions, 363-377 [Zbl 0905.57012]Rozansky, L., On finite type invariants of links and rational homology spheres derived from the Jones polynomial and Witten-Reshetikhin-Turaev invariant, 379-397 [Zbl 0868.57014]Lé, Thang T. Q., A quantum \(sl_2\)-invariant of 3-manifolds which contains all the Witten-Reshetikhin-Turaev invariants, 399-409 [Zbl 0941.57016]Ohtsuki, Tomotada, On some invariants of 3-manifolds, 411-427 [Zbl 0907.57015]Murakami, Hitoshi; Ohtsuki, Tomotada, Quantum \(Sp(2)\) invariants of three-manifolds at eighth and tenth roots of unity, 429-443 [Zbl 0876.57027]Garoufalidis, Stavros; Ohtsuki, Tomotada, On finite type 3-manifold invariants. V: Rational homology 3-spheres, 445-457 [Zbl 0889.57019]Murakami, Jun, The Casson invariant for a knot in a 3-manifold, 459-469 [Zbl 0949.57009]Kauffman, Louis H., Invariants of links and three-manifolds via Hopf algebras, 471-479 [Zbl 0901.57023]Yetter, David, Portrait of the handle as a Hopf algebra, 481-502 [Zbl 0873.57016]Kerler, Thomas, Genealogy of non-perturbative quantum invariants of 3-manifolds: The surgical family, 503-547 [Zbl 0869.57014]Goryunov, V., Finite order invariants of framed knots in a solid torus and in Arnold’s \(J^ +\)-theory of plane curves, 549-556 [Zbl 0871.57007]Deguchi, Tetsuo; Tsurusaki, Kyoichi, Numerical application of quantum invariants to random knotting, 557-565 [Zbl 0870.57011]Bradlow, Steven B.; García-Prada, Oscar, Non-Abelian monopoles and vortices, 567-589 [Zbl 0870.57038]Taubes, Clifford Henry, Seiberg-Witten and Gromov invariants, 591-601 [Zbl 0873.57017]Ueno, Kenji, Introduction to conformal field theory with gauge symmetries, 603-745 [Zbl 0873.32022] Cited in 1 Document MSC: 00B25 Proceedings of conferences of miscellaneous specific interest 32-06 Proceedings, conferences, collections, etc. pertaining to several complex variables and analytic spaces 53-06 Proceedings, conferences, collections, etc. pertaining to differential geometry 58-06 Proceedings, conferences, collections, etc. pertaining to global analysis Keywords:Geometry; Physics; Proceedings; Conference; Aarhus (Denmark) × Cite Format Result Cite Review PDF