×

Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems. (English) Zbl 0860.53045

If \(M\) is a connected topological space, an end is either an element of \(\lim \pi_0(M\setminus K)\) where the limit is taken over all compact subsets \(K\) of \(M\), or it is a connected component of \(M\setminus K\) for some compact subset \(K\) which is not relatively compact in \(M\). The ends of a smooth manifold say something about its structure ‘at infinity’. A complete Riemannian manifold is said to have bounded geometry if it has bounded curvature and derivatives thereof and has positive injectivity radius. A complex manifold is said to be weakly 1-complete if it admits a continuous plurisubharmonic exhaustion function.
For the main result of this article, \(M\) is supposed to be a connected Kähler manifold which has either bounded geometry or is weakly 1-complete. The conclusions are that if \(H^1(M,\mathbb{R})=0\), then \(M\) has at most one end whilst if \(M\) has three or more ends, then it admits a proper holomorphic mapping onto a Riemann surface. As shown by a classical example of Cousin, this second conclusion is sharp – there is a Kähler surface which has both bounded geometry and is 1-complete but admits no nonconstant holomorphic functions.
There are several other interesting theorems proved along the way and a version of the Lefschetz theorem due to Nori (by completely different methods) follows. The proof applies the methods of abstract potential theory and techniques introduced by Gromov, Li, Nakai, Sario, Sullivan, and others.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
32Q15 Kähler manifolds
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [ABR]D. Arapura, P. Bressler, M. Ramachandran, On the fundamental group of a compact Kähler manifold, Duke Math. J. 64 (1992), 477–488. · Zbl 0783.57009
[2] [Au]T. Aubin, Nonlinear Analysis on Manifolds, Monge Ampère Equations (Grund. der math. Wiss. 252), Springer, Berlin-Heidelberg-New York, 1982.
[3] [C]H. Cartan, Quotients of complex analytic spaces, in ”Contributions to Function Theory”, International Colloquium on Function Theory 1960, 1–15, Tata Inst. of Fund. Res., Bombay 1960
[4] [ChY]S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333–354. · Zbl 0312.53031
[5] [Cor]K. Corlette, FlatG-bundles with canonical metrics, J. Diff. Geom. 28 (1988), 361–382. · Zbl 0676.58007
[6] [Cou]P. Cousin, Sur les fonctions triplement périodiques de deux variables, Acta Math. 33 (1910), 105–232. · JFM 41.0492.02
[7] [D1]J.-P. Demailly, EstimationsL 2 pour l’operateur \(\bar \partial \) d’un fibré vectoriel holomorphe semi- positif au-dessus d’une variété kählerienne complète, Ann. Scient. Éc. Norm. Sup. 15 (1982), 457–511.
[8] [D2]J.-P. Demailly, Cohomology ofq-convex spaces in top degrees, Math. Z. 204 (1990), 283–295. · Zbl 0682.32017
[9] [DiO]K. Diederich, T. Ohsawa, A Levi problem on two-dimensional complex manifolds, Math. Ann. 261 (1982), 255–261. · Zbl 0502.32010
[10] [F1]K. Fritzsche,q-konvexe Restmengen in kompakten komplexen Mannigfaltigkeiten, Math. Ann. 221, 251–273 (1976) · Zbl 0327.32007
[11] [F2]K. Fritzsche, Pseudoconvexity properties of complements of analytic subvarieties, Math. Ann. 230 (1977), 107–122. · Zbl 0353.32022
[12] [G]M. Gaffney, A special Stokes theorem for Riemannian manifolds, Ann. Math. 60 (1954), 140–145. · Zbl 0055.40301
[13] [GiTr]D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order (Grund. der Math. Wiss. 224), Springer, Berlin-Heidelberg-New York, 1983. · Zbl 0562.35001
[14] [Gr1]H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368. · Zbl 0173.33004
[15] [Gr2]H. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z. 81 (1963), 377–391. · Zbl 0151.09702
[16] [GreWu]R.E. Greene, H. Wu,C approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Scient. Éc. Norm. Sup. 12 (1979), 47–84. · Zbl 0415.31001
[17] [Gro1]M. Gromov, Sur le groupe fondamental d’une variété kählerienne, C.R. Acad. Sci. Paris 308 (1989), 67–70.
[18] [Gro2]M. Gromov, Kähler hyperbolicity andL 2-Hodge Theory, J. Diff. Geom. 33, 263–292 (1991). · Zbl 0719.53042
[19] [GroSc]M. Gromov, R. Schoen, Harmonic maps into singular spaces andp-adic superrigidity for lattices in groups of rank one, Publ. Math. I.H.E.S. 76 (1992), 165–246. · Zbl 0896.58024
[20] [Gu]R. Gunning, Introduction to Holomophic Functions of Several Variables, Vol. I, Wadsworth, Belmont 1990.
[21] [H]A. Huckleberry, The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex, Math. Ann. 219 (1976), 127–137. · Zbl 0313.32017
[22] [L]P. Li, On the structure of complete Kähler manifolds with nonnegative curvature near infinity, Invent. Math. 99 (1990), 579–600. · Zbl 0695.53052
[23] [LT1]P. Li, L.-F. Tam, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. Math. 125 (1987), 171–207. · Zbl 0622.58001
[24] [LT2]P. Li, L.-F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105 (1991), 1–46. · Zbl 0748.58006
[25] [LT3]P. Li, L.-F. Tam, Harmonic functions and the structure of complete manifolds, J. Diff. Geom. 35 (1992), 359–383. · Zbl 0768.53018
[26] [N1]M. Nakai, On Evans potential, Proc. Japan. Acad. 38 (1962), 624–629. · Zbl 0197.08604
[27] [N2]M. Nakai, Infinite boundary value problems for second order elliptic partial differential equations, J. Fac. Sci. Univ. Tokyo, Sect. I 17 (1970), 101–121. · Zbl 0211.41401
[28] [Na]S. Nakano, Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S. Kyoto 10 (1974), 101–110. · Zbl 0298.32019
[29] [Nar]R. Narasimhan, The Levi problem for complex spaces II, Math. Ann. 146 (1962), 195–216. · Zbl 0131.30801
[30] [No]M. Nori, Zariski’s conjecture and related problems, Ann. Scient. Éc. Norm. Sup. 16 (1983), 305–344. · Zbl 0527.14016
[31] [O1]T. Ohsawa, Weakly 1-complete manifold and Levi problem. Publ. R.I.M.S. Kyoto 17 (1981), 153–164. · Zbl 0465.32011
[32] [O2]T. Ohsawa, Completeness of noncompact analytic spaces, Publ. R.I.M.S. Kyoto 20 (1984), 683–692. · Zbl 0568.32008
[33] [Re]R. Remmert, Reduction of complex spaces, in ”Seminars on Analytic Functions, Vol. I”, 190–205, I.A.S., Princeton, 1957.
[34] [RoSa]B. Rodin, L. Sario, Principal Functions, Princeton: Van Nostrand 1968. · Zbl 0159.10701
[35] [S]L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992), 417–450. · Zbl 0735.58032
[36] [SaN]L. Sario, M. Nakai, Classification Theory of Riemann Surfaces (Grund. der Math Wiss., Bd. 164), Springer, Berlin-Heidelberg-New York, 1970. · Zbl 0199.40603
[37] [SaNos]L. Sario, K. Noshiro, Value Distribution Theory, Van Nostrand, Princeton, 1966. · Zbl 0173.07904
[38] [Sch1]M. Schneider, Über eine Vermutung von Hartshorne, Math. Ann. 201 (1973), 221–229. · Zbl 0255.32009
[39] [Sch2]M. Schneider, Lefschetzsätze und Hyperkonvexität, Invent. Math. 31 (1975), 183–192. · Zbl 0313.32025
[40] [ScoW]P. Scott, T. Wall, Topological methods in group theory, in ”Homological Group Theory”, London Math. Soc. Lect. Note Series 36, 137–203, Cambridge University Press, Cambridge, 1979.
[41] [Su]D. Sullivan, Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and Hausdorff dimension two, in ”Geometry Symposium, Utrecht 1980” Lect. Notes in Math. 894, 127–144, Springer, Berlin-Heidelberg-New York 1981.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.