## Nontrivial solution of a semilinear Schrödinger equation.(English)Zbl 0864.35036

The authors consider the nonlinear, stationary Schrödinger equation $$-\Delta u+V(\cdot)u= f(\cdot,u)$$ in $$\mathbb{R}^n$$. Assume that $$V\in C(\mathbb{R}^n)$$ and $$f\in C^1(\mathbb{R}^n\times \mathbb{R})$$ are 1-periodic in $$x_k$$, $$1\leq k\leq n$$, and $$D:H^2(\mathbb{R}^n)\to L^2(\mathbb{R}^n)$$, $$u\mapsto-\Delta u+V(\cdot)u$$ is invertible. Moreover, let $$f$$ satisfy $$|f_u(x,u)|\leq\text{const}(|u|^{q-2}+|u|^{p-2})$$ for $$2<q\leq p<2^*$$ $$(={{2n}\over{n-2}}$$ for $$n\geq 3$$, $$=\infty$$ otherwise). Then the equation has a nontrivial solution $$u\in H^1(\mathbb{R}^n)$$, provided that $$0<\alpha F(x,u)\leq f(x,u)u$$, $$u\neq 0$$, with some constant $$\alpha>2$$ and $$F(x,u):= \int^u_0 f(x,t)dt$$.
To obtain this solution, the existence of a Palais-Smale sequence to a suitable level of the functional ${\mathcal E}(u):= \int_{\mathbb{R}^n} {\textstyle{1\over2}} |\nabla u(x)|^2+ {\textstyle{1\over2}} V(x)u^2(x)- F(x,u(x))dx, \qquad u\in H^1(\mathbb{R}^n),$ is proved, i.e., there is a $$c\in(0,\infty)$$ and $$\{u_n\}\subset H^1(\mathbb{R}^n)$$ such that $${\mathcal E}(u_n)\to c$$ and $$\nabla{\mathcal E}(u_n)\to 0$$ in $$H^1(\mathbb{R}^n)$$. The difficulty here is that $${\mathcal E}$$ satisfies no Palais-Smale condition because of the periodicity. Moreover, the functional is strongly indefinite since 0 lies in a spectral gap of the linear operator $$D$$.

### MSC:

 35J60 Nonlinear elliptic equations 49J35 Existence of solutions for minimax problems 35J20 Variational methods for second-order elliptic equations
Full Text:

### References:

 [1] Alama S., J.Diff.Equ. 96 pp 89– (1992) · Zbl 0766.35009 · doi:10.1016/0022-0396(92)90145-D [2] Benci V., Inventiones Math. 52 pp 241– (1979) · Zbl 0465.49006 · doi:10.1007/BF01389883 [3] Coste J., The continuous model. Physical review B 39 (18) pp 13096– (1989) [4] Buffoni B., Proc. Amer. Math. Soc. 119 (18) pp 179– (1993) · doi:10.1090/S0002-9939-1993-1145940-X [5] Esteban M.J., Commun.Math.Phys. 171 (18) pp 323– (1995) · Zbl 0843.35114 · doi:10.1007/BF02099273 [6] Gohberg, I., Golberg, S. and Kaashoek, M. 1991. ”Classes of linear operators”. Vol. 1, Birkhäuser. [7] Heinz H.P., J.Diff.Equ. 100 pp 341– (1992) · Zbl 0767.35006 · doi:10.1016/0022-0396(92)90118-7 [8] Höfer H., Mathematische Annalen pp 483– [9] Höfer H., Inventiones Math. 90 pp 1– (1987) · Zbl 0631.58022 · doi:10.1007/BF01389030 [10] Jeanjean I., J.Diff.Equ. 112 pp 53– (1994) · Zbl 0804.35033 · doi:10.1006/jdeq.1994.1095 [11] Lions P.L., Part 1 and 2. Ann. Inst. Henri Poincaré 1 pp 109– (1984) [12] Moulis M., Ann. Inst. Inst.Fourier 21 4 pp 293– (1971) · Zbl 0271.41025 · doi:10.5802/aif.400 [13] Nabiev R.F., Optic letters 18 (19) pp 1612– (1993) · doi:10.1364/OL.18.001612 [14] Séré E., commun. Math. Phys. 172 (19) pp 293– (1995) · Zbl 0840.34046 · doi:10.1007/BF02099430 [15] Smale S., American Journ. of Math. 87 (19) pp 861– (1965) · Zbl 0143.35301 · doi:10.2307/2373250 [16] Tanaka K., J.Diff. Equat. 94 (19) pp 315– (1991) · Zbl 0787.34041 · doi:10.1016/0022-0396(91)90095-Q [17] Willem M., Progress in Diff. Eqns, to appear
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.