zbMATH — the first resource for mathematics

On some inequalities for the incomplete gamma function. (English) Zbl 0865.33002
Summary: Let \(p\neq 1\) be a positive real number. We determine all real numbers \(\alpha= \alpha(p)\) and \(\beta=\beta(p)\) such that the inequalities \[ [1- e^{-\beta x^p}]^{1/p}<\frac{1}{\Gamma(1+ 1/p)}\int^x_0 e^{-t^p}dt<[1-e^{-\alpha x^p}]^{1/p} \] are valid for all \(x>0\). And, we determine all real numbers \(a\) and \(b\) such that \[ -\log(1- e^{-ax})\leq \int^\infty_x \frac{e^{-t}}{t} dt\leq \log(1- e^{-bx}) \] hold for all \(x> 0\).
Reviewer: Reviewer (Berlin)

33B20 Incomplete beta and gamma functions (error functions, probability integral, Fresnel integrals)
26D07 Inequalities involving other types of functions
26D15 Inequalities for sums, series and integrals
Full Text: DOI
[1] J. T. Chu, On bounds for the normal integral, Biometrika 42 (1955), 263-265. · Zbl 0065.11102
[2] G. M. Fichtenholz, Differential- und Integralrechnung. II, 7th ed., Hochschulbücher für Mathematik [University Books for Mathematics], 62, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 (German). Translated from the Russian by Brigitte Mai and Walter Mai. · Zbl 0143.27002
[3] Walter Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. and Phys. 38 (1959/60), 77 – 81. · Zbl 0094.04104 · doi:10.1002/sapm195938177 · doi.org
[4] D. S. Mitrinović, Analytic inequalities, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. Die Grundlehren der mathematischen Wissenschaften, Band 165. · Zbl 0199.38101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.