×

Effect of delay on the boundary of the basin of attraction in a self-excited single graded-response neuron. (English) Zbl 0869.68086

Summary: Little attention has been paid in the past to the effects of interunit transmission delays (representing axonal and synaptic delays) on the boundary of the basin of attraction of stable equilibrium points in neural networks. As a first step toward a better understanding of the influence of delay, we study the dynamics of a single graded-response neuron with a delayed excitatory self-connection. The behavior of this system is representative of that of a family of networks composed of graded-response neurons in which most trajectories converge to stable equilibrium points for any delay value. It is shown that changing the delay modifies the “location” of the boundary of the basin of attraction of the stable equilibrium points without affecting the stability of the equilibria. The dynamics of trajectories on the boundary are also delay dependent and influence the transient regime of trajectories within the adjacent basins. Our results suggest that when dealing with networks with delay, it is important to study not only the effect of the delay on the asymptotic convergence of the system but also on the boundary of the basins of attraction of the equilibria.

MSC:

68T05 Learning and adaptive systems in artificial intelligence

Keywords:

neural networks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1006/jdeq.1993.1067 · Zbl 0781.34048 · doi:10.1006/jdeq.1993.1067
[2] DOI: 10.1016/0167-2789(87)90021-2 · doi:10.1016/0167-2789(87)90021-2
[3] DOI: 10.1007/BF01049141 · Zbl 0796.34063 · doi:10.1007/BF01049141
[4] DOI: 10.1155/S1048953391000242 · Zbl 0746.34043 · doi:10.1155/S1048953391000242
[5] DOI: 10.1016/S0893-6080(05)80111-X · doi:10.1016/S0893-6080(05)80111-X
[6] DOI: 10.1109/81.222796 · Zbl 0792.68115 · doi:10.1109/81.222796
[7] DOI: 10.1103/PhysRevE.50.1594 · doi:10.1103/PhysRevE.50.1594
[8] DOI: 10.1016/0375-9601(93)90256-Y · doi:10.1016/0375-9601(93)90256-Y
[9] DOI: 10.1049/el:19951349 · doi:10.1049/el:19951349
[10] DOI: 10.1103/PhysRevE.51.738 · doi:10.1103/PhysRevE.51.738
[11] DOI: 10.1109/81.251826 · Zbl 0844.58056 · doi:10.1109/81.251826
[12] DOI: 10.1142/S021812749500065X · Zbl 0886.58093 · doi:10.1142/S021812749500065X
[13] DOI: 10.1016/S0022-5193(05)80127-4 · doi:10.1016/S0022-5193(05)80127-4
[14] DOI: 10.1016/0167-2789(94)90043-4 · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[15] DOI: 10.1109/72.329700 · doi:10.1109/72.329700
[16] DOI: 10.1016/0167-2789(95)00203-0 · Zbl 0883.68108 · doi:10.1016/0167-2789(95)00203-0
[17] DOI: 10.1007/BF01048262 · Zbl 0759.34036 · doi:10.1007/BF01048262
[18] DOI: 10.1007/BF00275162 · Zbl 0523.93038 · doi:10.1007/BF00275162
[19] DOI: 10.1209/0295-5075/7/7/016 · doi:10.1209/0295-5075/7/7/016
[20] DOI: 10.1016/0893-6080(89)90018-X · doi:10.1016/0893-6080(89)90018-X
[21] DOI: 10.1006/jdeq.1995.1161 · Zbl 0840.34041 · doi:10.1006/jdeq.1995.1161
[22] DOI: 10.1073/pnas.81.10.3088 · Zbl 1371.92015 · doi:10.1073/pnas.81.10.3088
[23] DOI: 10.1063/1.165982 · Zbl 1055.34510 · doi:10.1063/1.165982
[24] DOI: 10.1162/neco.1994.6.6.1141 · Zbl 0810.92005 · doi:10.1162/neco.1994.6.6.1141
[25] DOI: 10.1006/jdeq.1996.0037 · Zbl 0849.34056 · doi:10.1006/jdeq.1996.0037
[26] DOI: 10.1142/S0218127491000476 · Zbl 0878.34031 · doi:10.1142/S0218127491000476
[27] DOI: 10.1016/0167-2789(91)90236-3 · Zbl 0800.92059 · doi:10.1016/0167-2789(91)90236-3
[28] DOI: 10.1103/PhysRevA.39.347 · doi:10.1103/PhysRevA.39.347
[29] DOI: 10.1016/0893-6080(95)00097-6 · doi:10.1016/0893-6080(95)00097-6
[30] DOI: 10.1142/S0218127493000210 · Zbl 0872.92001 · doi:10.1142/S0218127493000210
[31] DOI: 10.1137/0140012 · Zbl 0459.92007 · doi:10.1137/0140012
[32] DOI: 10.1002/cta.4490200504 · Zbl 0775.92011 · doi:10.1002/cta.4490200504
[33] DOI: 10.1109/81.153647 · Zbl 0775.92010 · doi:10.1109/81.153647
[34] DOI: 10.1109/81.224300 · Zbl 0800.92044 · doi:10.1109/81.224300
[35] DOI: 10.1016/0022-0396(87)90027-1 · Zbl 0612.34067 · doi:10.1016/0022-0396(87)90027-1
[36] DOI: 10.1103/PhysRevLett.57.2861 · doi:10.1103/PhysRevLett.57.2861
[37] Tak P., Zeitschrift fur Analysis und ihre Anwendungen 10 pp 275– (1991)
[38] Tak P., Journal für die reine und angewandte Mathematik 423 pp 101– (1992)
[39] DOI: 10.1016/0893-6080(94)90039-6 · Zbl 0810.92008 · doi:10.1016/0893-6080(94)90039-6
[40] DOI: 10.1103/PhysRevE.50.4206 · doi:10.1103/PhysRevE.50.4206
[41] DOI: 10.1103/PhysRevE.51.2611 · doi:10.1103/PhysRevE.51.2611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.