Totaro, Burt Tensor products in \(p\)-adic Hodge theory. (English) Zbl 0873.14019 Duke Math. J. 83, No. 1, 79-104 (1996). There is a classical relation between the \(p\)-adic absolute value of the eigenvalues of Frobenius on crystalline cohomology and Hodge numbers for a variety in characteristic \(p\): “The Newton polygon lies on or above the Hodge polygon”. For a variety in characteristic \(p\) with a lift to characteristic 0, Fontaine conjectured, and Faltings proved, a more precise statement: There is an inequality which relates the slope of Frobenius on any Frobenius-invariant subspace of the crystalline cohomology to the Hodge filtration, restricted to that subspace. A vector space over a \(p\)-adic field together with a \(\sigma\)-linear endomorphism and a filtration which satisfies this inequality is called a weakly admissible filtered isocrystal. The category of such objects is one possible \(p\)-adic analogue of the category of Hodge structures: in particular, it is an abelian category. We give a new proof of Faltings’ theorem [G. Faltings in: Proc. Internat. Congr. Math., ICM 94, 648-655 (1995; Zbl 0871.14010)] that the tensor product of weakly admissible filtered isocrystals over a \(p\)-adic field is weakly admissible. By a similar argument, we also prove a characterization of weakly admissible filtered isocrystals with \(G\)-structure in terms of geometric invariant theory, which was conjectured by Rapoport and Zink.Section 1 defines filtered isocrystals and explains how they arise geometrically. Sections 2 and 3 explain the ideas from geometric invariant theory which are used in the proof. Section 4 proves the tensor product theorem, and section 5 generalizes it to some bigger categories of filtered objects. Finally, sections 6-8 prove the characterization of weakly admissible filtered isocrystals with \(G\)-structure. Cited in 3 ReviewsCited in 16 Documents MSC: 14F30 \(p\)-adic cohomology, crystalline cohomology 14C30 Transcendental methods, Hodge theory (algebro-geometric aspects) 14G20 Local ground fields in algebraic geometry Keywords:\(p\)-adic Hodge theory; characteristic \(p\); crystalline cohomology; Hodge numbers; tensor product of weakly admissible filtered isocrystals; geometric invariant theory Citations:Zbl 0871.14010 PDFBibTeX XMLCite \textit{B. Totaro}, Duke Math. J. 83, No. 1, 79--104 (1996; Zbl 0873.14019) Full Text: DOI References: [1] P. Berthelot and A. Ogus, Notes on Crystalline Cohomology , Princeton University Press, Princeton, N.J., 1973. · Zbl 0383.14010 [2] A. Borel, Automorphic \(L\)-functions , Automorphic Forms, Representations, and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, 1979, pp. 27-61. · Zbl 0412.10017 [3] A. Borel and J. Tits, Groupes réductifs , Inst. Hautes Études Sci. Publ. Math. (1965), no. 27, 55-150. · Zbl 0145.17402 · doi:10.1007/BF02684375 [4] G. Faltings, Crystalline cohomology and \(p\)-adic Galois-representations , Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), Johns Hopkins University Press, Baltimore, Md., 1989, pp. 25-80. · Zbl 0805.14008 [5] G. Faltings, Mumford-Stabilität in der algebraischen Geometrie , to appear in the 1994 ICM proceedings. [6] G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces , Invent. Math. 116 (1994), no. 1-3, 109-138. · Zbl 0805.14011 · doi:10.1007/BF01231559 [7] J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate , Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 3-80. · Zbl 0429.14016 [8] J.-M. Fontaine, Représentations \(p\)-adiques semi-stables , Astérisque (1994), no. 223, 113-184, Périodes \(p\)-adiques. · Zbl 0865.14009 [9] J.-M. Fontaine and G. Laffaille, Construction de représentations \(p\)-adiques , Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 4, 547-608 (1983). · Zbl 0579.14037 [10] K. Kato, Semi-stable reduction and \(p\)-adic étale cohomology , Astérisque (1994), no. 223, 269-293. · Zbl 0847.14009 [11] G. Kempf, Instability in invariant theory , Ann. of Math. (2) 108 (1978), no. 2, 299-316. JSTOR: · Zbl 0406.14031 · doi:10.2307/1971168 [12] G. Laffaille, Groupes \(p\)-divisibles et modules filtrés: le cas peu ramifié , Bull. Soc. Math. France 108 (1980), no. 2, 187-206. · Zbl 0453.14021 [13] Yu. I. Manin, Theory of commutative formal groups over fields of finite characteristic , Uspehi Mat. Nauk 18 (1963), no. 6 (114), 3-90. · Zbl 0128.15603 · doi:10.1070/rm1963v018n06ABEH001142 [14] B. Mazur, Frobenius and the Hodge filtration (estimates) , Ann. of Math. (2) 98 (1973), 58-95. JSTOR: · Zbl 0261.14005 · doi:10.2307/1970906 [15] D. Mumford and J. Fogarty, Geometric Invariant Theory , Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, New York, 1982. · Zbl 0504.14008 [16] M. Narasimhan and C. Seshadri, Stable and unitary vector bundles on a compact Riemann surface , Ann. of Math. (2) 82 (1965), 540-567. JSTOR: · Zbl 0171.04803 · doi:10.2307/1970710 [17] S. Ramanan and A. Ramanathan, Some remarks on the instability flag , Tôhoku Math. J. (2) 36 (1984), no. 2, 269-291. · Zbl 0567.14027 · doi:10.2748/tmj/1178228852 [18] M. Rapoport and M. Richartz, On the classification and specialization of \(F\)-isocrystals with additional structure , to appear in Compositio Math. · Zbl 0874.14008 [19] M. Rapoport and T. Zink, Period Spaces for \(p\)-Divisible Groups , Princeton University Press, · Zbl 0873.14039 [20] B. Totaro, Tensor products of semistables are semistable , Geometry and Analysis on Complex Manifolds, World Scientific, River Edge, N.J., 1994, pp. 242-250. · Zbl 0873.14016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.