On a conjecture of Chalk. (English) Zbl 0876.11044

Let \(f \in \mathbb{Z}[x]\) be a polynomial of degree \(g \geq 2\). Consider, for any positive integer \(q\), the complete trigonometric sum \[ S(q,f) = \sum_{k=0}^{q-1}\exp (2 \pi i f(k)/q). \] In 1987 J. H. H. Chalk [Mathematika 34, 115-123 (1987; Zbl 0621.10024)] made a conjecture on an upper bound for \(S(q,f)\), when \(q\) is a prime power \(p^n\). In the present paper the author proves this conjecture if \(p\) is relatively small but \(\geq\) 3. When \(p \geq 3\) is relatively large, he gives a counterexample to Chalk’s conjecture and derives an alternative upper bound which is best possible. Moreover, for \(p=2\), the author improves previous results.
Reviewer: J.Hinz (Marburg)


11L07 Estimates on exponential sums


Zbl 0621.10024
Full Text: DOI


[1] Chalk, J. H.H., On Hua’s estimates for exponential sums, Mathematika, 34, 115-123 (1987) · Zbl 0621.10024
[2] Ding, P., An improvement to Chalk’s estimation of exponential sums, Acta Arith., 59, 149-155 (1991) · Zbl 0697.10031
[3] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (1979), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0423.10001
[4] Hua, L.-K., Additive Theory of Prime Numbers (1965), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0192.39304
[5] Hua, L.-K., On an exponential sums, J. Chinese Math. Soc., 2, 301-302 (1940) · Zbl 0061.06608
[6] Hua, L.-K., Die abschätzung von Exponentialsummen und ihre Anwendung in der Zahlentheorie, Enzyklopädie Math. Wiss, I2, H.13, TI, 41 (1959) · Zbl 0083.03601
[7] Loh, W. K.A., On Hua’s lemma, Bull. Austral. Math. Soc., 50, 451-458 (1994) · Zbl 0833.11040
[8] Loxton, J. H.; Smith, R. A., On Hua’s estimate for exponential sums, J. London Math. Soc. (2), 26, 15-20 (1982) · Zbl 0474.10030
[9] Loxton, J. H.; Vaughan, R. C., The estimation of complete exponential sums, Canad. Math. Bull., 28, 440-454 (1985) · Zbl 0575.10033
[10] Weil, A., On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34, 204-207 (1948) · Zbl 0032.26102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.