Algebraic index theorem. (English) Zbl 0887.58050

This paper is the first in a series aimed at providing an algebraic insight to various Atiyah-Singer type index theorems: We prove the Atiyah-Singer index theorem where the algebra of pseudo-differential operators is replaced by an arbitrary deformation quantization of the algebra of functions on a symplectic manifold.


58J20 Index theory and related fixed-point theorems on manifolds
53D55 Deformation quantization, star products
Full Text: DOI


[1] [ACKP] Arbarello, E., de Concini, C., Kac, V., Procesi, C.: Moduli spaces of curves and representation theory. Commun. Math. Phys.117, 1–36 (1988) · Zbl 0647.17010 · doi:10.1007/BF01228409
[2] [B] Brylinski, J.-L.: Some examples of cyclic and Hochschild homologies. Lect. Notes Math.,1271, 33–72 (1987) · doi:10.1007/BFb0079232
[3] [B1] Brylinski, J.-L.: A differential complex for Poisson manifold. J. Diff. Geom.28, 93–114 (1988)
[4] [BFFLS] Bayen, F., Flato, M., Fronsdal, C., Lichnerowiscz, A., Sternheimer, D.: Ann. Phys.111, 61–151 (1978) · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[5] [Bu] Burghelea, D.: Cyclic homology and algebraic K-theory of topological spaces. Contemp. Math.55, 89–115 (1983)
[6] [BTT] O’Brien, N., Toledo, D., Tong, Y.: A Grothendieck-Riemann-Roch formula for maps of complex manifolds. Math. Ann.271, 493–526 (1985) · Zbl 0539.14005 · doi:10.1007/BF01456132
[7] [C] Connes, A.: Noncommutative differential geometry. Publ. Math. IHES62 (1986) · Zbl 0681.55004
[8] [CFS] Connes, A., Flato, M., Sternheimer, D.: Closed star products and cyclic homology. Preprint, Paris, 1991
[9] [DT] Daletski, Y., Tsygan, B.: Operations on Hochschild and cyclic complexes. Preprint, 1992 · Zbl 0955.58002
[10] [F] Fedosov, B.: Index theorems. Itogi Nauki i tekhniki65 (1991) · Zbl 0884.58087
[11] [FRT] Faddeev, L., Reshetikhin, N., Takhtajan, L.: Quantization of Lie grroup and algebras. Algebra and Analysis1, 178–206 (1978)
[12] [FT] Feigin, B., Tsygan, B.: Lie algebra cohomology and Riemann-Roch theorem. Rend. Sci. Palermo,I (1987) · Zbl 0686.14007
[13] [Ge] Getzler, E.: Cartan homotopy formulas and Gauss-Manin connection in cyclic homology. Preprint (1992)
[14] [GeS] Getzler, E., Szenes, A.: On the Chern character of a theta-summable Fredholm module. J. Funct. Anal.84 2, 343–357 (1989) · Zbl 0686.46044 · doi:10.1016/0022-1236(89)90102-X
[15] [Ger] Gerstenhaber, M.: The cohomology structure on an associative ring. Ann. Math.78, 59–103 (1963) · Zbl 0131.27302 · doi:10.2307/1970343
[16] [G] Gut, S.: Thesis, Mets, 1980
[17] [HH] Helton, J., Howe, R.: Integral operators, commutators, traces, index and homology. Proc. of Conf. on operator theory, Lect. Notes in Math.345 (1973) · Zbl 0268.47054
[18] [JLO] Jaffe, A., Lesniewski, A., Osterwalder, K.: QuantumK-theory, I,K-theory2, 675–682 (1989)
[19] [K] Karoubi, M.: Homologie cyclique etK-theorie. Asterisque149 (1987)
[20] [L] Losik, M.V.: Characteristic classes of structures of the manifolds. Funct. An.21, 3, 38–52 (1987) · Zbl 0632.57016
[21] [LQ] Loday, J.L., Quillen, D.: Cyclic homology and Lie algebra homology of matrices. Commun. Math. Helv.59, 565–591 (1984) · Zbl 0565.17006 · doi:10.1007/BF02566367
[22] [MN] Moryoshi, H., Natsume, T.: To appear
[23] [N] Nistor, V.: A bivariant Chern character forp-summable quasi-homomorphisms.K-theory5, 193–211 (1991) · Zbl 0784.19001 · doi:10.1007/BF00533587
[24] [S] Soibelman, Y.: Irreducible representations of functions algebra on the quantum group SU(n) and Schubert cells. Dokl. AN SSSR40, 34–38 (1990)
[25] [STS] Semyonov-Tian-Shansky, M.: Dressing transformation and Poisson group actions. Publ. RIMS21, 1237–1260 (1985) · Zbl 0674.58038 · doi:10.2977/prims/1195178514
[26] [T] Tsygan, B.: Homology of matrix Lie algebras over rings and Hochschild homology. Uspekhi Mat. Nauk38, 2, 217–218 (1983) · Zbl 0518.17002
[27] [TT] Toledo, D., Tong, Y.: Parametrix for \(\bar \partial\) and Riemann-Roch in Čech theory. Topology15, 273–301 (1976) · Zbl 0355.58014 · doi:10.1016/0040-9383(76)90022-7
[28] [V] Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys. B300, 360–376 (1988) · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[29] [Wo] Wodzicki, M.: Cyclic homology of pseudodifferential operators and noncommutative Euler class. C.R.A.S., Ser. 1, 321–325 (1988) · Zbl 0657.58043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.