×

On automatic boundary corrections. (English) Zbl 0890.62026

Summary: Many popular curve estimators based on smoothing have difficulties caused by boundary effects. These effects are visually disturbing in practice and can play a dominant role in theoretical analysis. Local polynomial regression smoothers are known to correct boundary effects automatically. Some analogs are implemented for density estimation and the resulting estimators also achieve automatic boundary corrections.
In both settings of density and regression estimation, we investigate best weight functions for local polynomial fitting at the endpoints and find a simple solution. The solution is universal for general degree of local polynomial fitting and general order of estimated derivative. Furthermore, such local polynomial estimators are best among all linear estimators in a weak minimax sense, and they are highly efficient even in the usual linear minimax sense.

MSC:

62G07 Density estimation
62C20 Minimax procedures in statistical decision theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brown, L. D. and Low, M. G. (1996). Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · Zbl 0867.62022 · doi:10.1214/aos/1032181159
[2] Brown, L., Low, M. and Zhao, L. (1997). Anomalous behavior of fixed parameter asy mptotic rates of convergence in nonparametric function estimation problems. Unpublished manuscript.
[3] Cheng, M. Y. (1994). On boundary effects of smooth curve estimators. Ph.D. dissertation, Dept. Statistics, Univ. North Carolina, Chapel Hill.
[4] Cheng, M. Y. (1997). Boundary-aware estimators of integrated density derivative products. J. Roy. Statist. Soc. Ser. B 59 191-203. JSTOR: · Zbl 1090.62525 · doi:10.1111/1467-9868.00063
[5] Cheng, M. Y., Fan, J. and Marron, J. S. (1993). Minimax efficiency of local poly nomial fit estimators at boundaries. Mimeo Series 2098, Inst. Statist., Univ. North Carolina, Chapel Hill.
[6] Chu, C. K. and Marron, J. S. (1991). Choosing a kernel regression estimator. Statist. Sci. 6 404-436. · Zbl 0955.62561 · doi:10.1214/ss/1177011586
[7] Djojosugito, R. A. and Speckman, P. L. (1992). Boundary bias correction in nonparametric density estimation. Comm. Statist. Theory Methods 21 69-88. · Zbl 0800.62207 · doi:10.1080/03610929208830765
[8] Donoho, D. L. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. JSTOR: · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[9] Donoho, D. L. and Liu, R. C. (1991). Geometrizing rate of convergence III. Ann. Statist. 19 668-701. · Zbl 0754.62029 · doi:10.1214/aos/1176348115
[10] Donoho, D. L., Liu, R. C. and MacGibbon, B. (1990). Minimax risk over hy per rectangles, implications. Ann. Statist. 18 1416-1437. · Zbl 0705.62018 · doi:10.1214/aos/1176347758
[11] Efroimovich, S. (1996). On nonparametric regression for i.i.d. observations in general setting. Ann. Statist. 24 1126-1144. · Zbl 0865.62025 · doi:10.1214/aos/1032526960
[12] Epanechnikov, V. A. (1969). Nonparametric estimation of a multidimensional probability density. Theory Probab. Appl. 14 153-158. · Zbl 0175.17101
[13] Eubank, R. L. and Speckman, P. (1991). A bias reduction theorem with applications in nonparametric regression. Scand. J. Statist. 18 211-222. · Zbl 0798.62050
[14] Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 998-1004. JSTOR: · Zbl 0850.62354 · doi:10.2307/2290637
[15] Fan, J. (1993). Local linear regression smoothers and their minimax efficiency. Ann. Statist. 21 196-216. · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[16] Fan, J. and Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. Ann. Statist. 20 2008-2036. · Zbl 0765.62040 · doi:10.1214/aos/1176348900
[17] Fan, J. and Hall, P. (1994). On curve estimation by minimizing mean absolute deviation and its implications. Ann. Statist. 22 867-885. · Zbl 0806.62030 · doi:10.1214/aos/1176325499
[18] Fan, J. and Marron, J. S. (1994). Fast implementations of nonparametric curve estimators. J. Comput. Graph. Statist. 3 35-56.
[19] Fan, J., Gasser, T., Gijbels, I., Brockmann, M. and Engels, J. (1997). Local poly nomial fitting: a standard for nonparametric regression. Ann. Inst. Statist. Math. 49 79-99. · Zbl 0890.62032 · doi:10.1023/A:1003162622169
[20] Gasser, T. and M üller, H. G. (1979). Kernel estimation of regression functions. Smoothing Techniques for Curve Estimation. Lecture Notes in Math. 757 23-68. Springer, New York. · Zbl 0418.62033 · doi:10.1007/BFb0098489
[21] Gasser, T., M üller, H. G. and Mammitzsch, V. (1985). Kernels for nonparametric curve estimation. J. Roy. Statist. Soc. Ser. B 47 238-252. JSTOR: · Zbl 0574.62042
[22] Granovsky, B. L. and M üller, H. G. (1991). Optimizing kernel methods: a unifying variational principle. Internat. Statist. Rev. 59 373-388. · Zbl 0749.62024 · doi:10.2307/1403693
[23] Hall, P. and Wehrly, T. E. (1991). A geometrical method for removing edge effects from kernelty pe nonparametric regression estimators. J. Amer. Statist. Assoc. 86 665-672. JSTOR: · doi:10.2307/2290395
[24] Hastie, T. and Loader, C. (1993). Local regression: automatic kernel carpentry. Statist. Sci. 8 120-143.
[25] Jones, M. C. (1993). Simple boundary correction for kernel density estimation. Statist. Comput. 3 135-146.
[26] Lejeune, M. and Sarda, P. (1992). Smooth estimators of distribution and density functions. Comput. Statist. Data Anal. 14 457-471. · Zbl 0937.62581 · doi:10.1016/0167-9473(92)90061-J
[27] M üller, H. G. (1991). Smooth optimal kernel estimators near endpoints. Biometrika 78 521-530. · Zbl 1192.62108 · doi:10.1093/biomet/78.3.521
[28] Nussbaum, M. (1985). Spline smoothing in regression models and asy mptotic efficiency in L2 Ann. Statist. 13 984-997. · Zbl 0596.62052 · doi:10.1214/aos/1176349651
[29] Rice, J. (1984). Boundary modification for kernel regression. Comm. Statist. Theory Methods 13 893-900. · Zbl 0552.62022 · doi:10.1080/03610928408828728
[30] Rice, J. and Rosenblatt, M. (1981). Integrated mean squared error of a smoothing spline. J. Approx. Theory 33 353-365. · Zbl 0516.41006 · doi:10.1016/0021-9045(81)90066-6
[31] Ruppert, D. and Wand, M. P. (1994). Multivariate weighted least squares regression. Ann. Statist. 22 1346-1370. · Zbl 0821.62020 · doi:10.1214/aos/1176325632
[32] Sacks, J. and Ylvisaker, D. (1981). Asy mptotically optimum kernels for density estimation at a point. Ann. Statist. 9 334-346. · Zbl 0458.62031 · doi:10.1214/aos/1176345399
[33] Schuster, E. F. (1985). Incorporating support constraints into nonparametric estimators of densities. Comm. Statist. Theory Methods 14 1123-1136. · Zbl 0585.62070 · doi:10.1080/03610928508828965
[34] Stone, C. J. (1977). Consistent nonparametric regression. Ann. Statist. 5 595-645. · Zbl 0366.62051 · doi:10.1214/aos/1176343886
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.