Nasr, A. H. Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential. (English) Zbl 0891.34038 Proc. Am. Math. Soc. 126, No. 1, 123-125 (1998). Summary: In the case of oscillatory potentials, we give sufficient conditions for the oscillation of the forced super-linear equation \[ x''(t)+a(t)|x(t)|^{\nu}\text{ sgn } x(t)=g(t). \] This answers a question raised by J. S. W. Wong [SIAM J. Math. Anal. 19, No. 3, 667-675 (1988; Zbl 0655.34023)]. Cited in 6 ReviewsCited in 37 Documents MSC: 34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations Keywords:nonlinear second order differential equations; oscillation Citations:Zbl 0655.34023 PDF BibTeX XML Cite \textit{A. H. Nasr}, Proc. Am. Math. Soc. 126, No. 1, 123--125 (1998; Zbl 0891.34038) Full Text: DOI OpenURL References: [1] Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 30, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. · Zbl 0097.26502 [2] M. A. El-Sayed, An oscillation criterion for a forced second order linear differential equation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 813 – 817. · Zbl 0777.34023 [3] Athanassios G. Kartsatos, On the maintenance of oscillations of \?th order equations under the effect of a small forcing term, J. Differential Equations 10 (1971), 355 – 363. · Zbl 0216.11504 [4] Athanassios G. Kartsatos, Maintenance of oscillations under the effect of a periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377 – 383. · Zbl 0234.34040 [5] V. Komkov, On boundedness and oscillation of the differential equation \?\(^{\prime}\)\(^{\prime}\)+\?(\?)\?(\?)=\?(\?) in \?\(^{n}\), SIAM J. Appl. Math. 22 (1972), 561 – 568. · Zbl 0223.34029 [6] Samuel M. Rankin III, Oscillation theorems for second-order nonhomogeneous linear differential equations, J. Math. Anal. Appl. 53 (1976), no. 3, 550 – 553. · Zbl 0328.34033 [7] James S. W. Wong, Second order nonlinear forced oscillations, SIAM J. Math. Anal. 19 (1988), no. 3, 667 – 675. · Zbl 0655.34023 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.