×

Robust constrained model predictive control using linear matrix inequalities. (English) Zbl 0897.93023

In this paper an approach is presented to overcome the main disadvantage of current design techniques for model predictive control (MPC), i.e. their inability to deal explicitly with plant model uncertainty. Hence, the authors present – what is best characterized by the following from their abstract – ‘an approach for MPC synthesis that allows for explicit incorporation of the description of plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a worst-case infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques \(\dots\) this problem is reduced to a convex optimization involving linear matrix inequalities.’
The authors show that this design results in a control that robustly stabilizes the set of uncertain plants. Several extensions are discussed and well-chosen examples illustrate the theoretical results of this well readable paper which is of interest for control engineers and applied mathematicians interested in automatic control.
Reviewer: I.Troch (Wien)

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
15A39 Linear inequalities of matrices
93D21 Adaptive or robust stabilization

Software:

LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alizadeh, F.; Haeberly, J.-P. A.; Overton, M. L., A new primal-dual interior-point method for semidefinite programming, (Proc. 5th SIAM Conf. on Applied Linear Algebra. Proc. 5th SIAM Conf. on Applied Linear Algebra, Snowbird, UT, June 1994 (1994)) · Zbl 0819.65098
[2] Allwright, J. C.; Papavasiliou, G. C., On linear programming and robust model-predictive control using impulse-responses, Syst. Control Lett., 18, 159-164 (1992) · Zbl 0756.90059
[3] Bernussou, J.; Peres, P. L.D.; Geromel, J. C., A linear programming oriented procedure for quadratic stabilization of uncertain systems, Syst. Control Lett., 13, 65-72 (1989) · Zbl 0678.93042
[4] Bitmead, R. R.; Gevers, M.; Wertz, V., (Adaptive Optimal Control (1990), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ) · Zbl 0751.93052
[5] Boyd, S.; El Ghaoui, L., Methods of centers for minimizing generalized eigenvalues, Lin. Algebra Applics, 188, 63-111 (1993) · Zbl 0781.65051
[6] Boyd, S.; Ghaoui, L. El; Feron, E.; Balakrishnan, V., (Linear Matrix Inequalities in System and Control Theory (1994), SIAM: SIAM Philadelphia) · Zbl 0816.93004
[7] Campo, P. J.; Morari, M., ∞-norm formulation of model predictive control problems, (Proc. American Control Conf.. Proc. American Control Conf., Seattle, WA (1986)), 339-343
[8] Campo, P. J.; Morari, M., Robust model predictive control, (Proc. American Control Conf.. Proc. American Control Conf., Minneapolis, MN (1987))
[9] Clarke, D. W.; Mohtadi, C., Properties of generalized predictive control, Automatica, 25, 859-875 (1989) · Zbl 0699.93028
[10] Clarke, D. W.; Mohtadi, C.; Tuffs, P. S., Generalized predictive control—II. Extensions and interpretations, Automatica, 23, 149-160 (1987) · Zbl 0621.93033
[11] Feron, E.; Balakrishnan, V.; Boyd, S., Design of stabilizing state feedback for delay systems via convex optimization, Tucson, AZ, (Proc. 31st IEEE Conf. on Decision and Control, Tucson, AZ, Vol. 1 (1992)), 147-148
[12] Gahinet, P.; Nemirovski, A.; Lamb, A. J.; Chilali, M., (LMI Control Toolbox: For Use with MATLAB (1995), The Mathworks, Inc: The Mathworks, Inc Natick, MA)
[13] García, C. E.; Morari, M., Internal model control 1. A unifying review and some new results, Ind. Engng Chem. Process Des. Dev., 21, 308 (1982)
[14] Garcia, C. E.; Morari, M., Internal model control 2. Design procedure for multivariable systems, Ind. Engng Chem. Process Des. Dev., 24, 472-484 (1985)
[15] Garcia, C. E.; Morari, M., Internal model control 3. Multivariable control law computation and tuning guidelines, Ind. Engng Chem. Process Des. Dev., 24, 484-494 (1985)
[16] García, C. E.; Prett, D. M.; Morari, M., Model predictive control: theory and practice—a survey, Automatica, 25, 335-348 (1989) · Zbl 0685.93029
[17] Genceli, H.; Nikolaou, M., Robust stability analysis of constrained \(l_1\)-norm model predictive control, AIChE J., 39, 1954-1965 (1993)
[18] Geromel, J. C.; Peres, P. L.D.; Bernussou, J., On a convex parameter space method for linear control design of uncertain systems, SIAM J. Control Optim., 29, 381-402 (1991) · Zbl 0741.93020
[19] Kwakernaak, H.; Sivan, R., (Linear Optimal Control Systems (1972), Wiley-Interscience: Wiley-Interscience New York) · Zbl 0276.93001
[20] Liu, R. W., Convergent systems, IEEE Trans. Autom. Control, AC-13, 384-391 (1968)
[21] Muske, K. R.; Rawlings, J. B., Model predictive control with linear models, AIChe J., 39, 262-287 (1993)
[22] Nesterov, Yu.; Nemirovsky, A., (Interior-point Polynomial Methods in Convex Programming (1994), SIAM: SIAM Philadelphia) · Zbl 0824.90112
[23] Packard, A.; Doyle, J., The complex structured singular value, Automatica, 29, 71-109 (1993) · Zbl 0772.93023
[24] Polak, E.; Yang, T. H., Moving horizon control of linear systems with input saturation and plant uncertainty—1: robustness, Int. J. Control, 53, 613-638 (1993) · Zbl 0782.93050
[25] Polak, E.; Yang, T. H., Moving horizon control of linear systems with input saturation and plant uncertainty—2: disturbance rejection and tracking, Int. J. Control, 58, 639-663 (1993) · Zbl 0782.93051
[26] Rawlings, J. B.; Muske, K. R., The stability of constrained receding horizon control, IEEE Trans. Autom. Control, AC-38, 1512-1516 (1993) · Zbl 0790.93019
[27] Tsirukis, A. G.; Morari, M., Controller design with actuators constraints, (Proc.
[28] Vandenberghe, L.; Boyd, S., A primal-dual potential reduction method for problems involving linear matrix inequalities, Math. Program., 69, 205-236 (1995) · Zbl 0857.90104
[29] Wie, B.; Bernstein, D. S., Benchmark problems for robust control design, J. Guidance, Control, Dyn., 15, 1057-1059 (1992)
[30] Yakubovich, V. A., Nonconvex optimization problem: the infinite-horizon linear-quadratic control problem with quadratic constraints, Syst. Control Lett., 19, 13-22 (1992) · Zbl 0776.49009
[31] Zafiriou, E., Robust model predictive control of processes with hard constraints, Comput. Chem. Engng., 14, 359-371 (1990), 1990
[32] Zafiriou, E.; Marchal, A., Stability of SISO quadratic dynamic matrix control with hard output constraints, AIChE J., 37, 1550-1560 (1991)
[33] Zheng, A.; Balakrishnan, V.; Morari, M., Constrained stabilization of discrete-time systems, Int J. Robust Nonlin. Control, 5, 461-485 (1995) · Zbl 0844.93066
[34] Zheng, Z. Q.; Morari, M., Robust stability of constrained model predictive control, (Proc. American Control Conf.. Proc. American Control Conf., San Francisco, CA (1993)), 379-383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.