Spokoiny, V. G. Adaptive hypothesis testing using wavelets. (English) Zbl 0898.62056 Ann. Stat. 24, No. 6, 2477-2498 (1996). Summary: Let a function \(f\) be observed with a noise. We wish to test the null hypothesis that the function is identically zero, against a composite nonparametric alternative: functions from the alternative set are separated away from zero in an integral (e.g., \(L_2\)) norm and also possess some smoothness properties. The minimax rate of testing for this problem was evaluated in earlier papers by Yu. I. Ingster [Math. Methods Stat. 2, No. 2, 85-114 (1993; Zbl 0798.62057); ibid. No. 3, 171-189 (1993; Zbl 0798.62058); ibid., No. 4, 249-268 (1993; Zbl 0798.62059)] and by O. V. Lepski and the author in an unpublished manuscript [see also the later paper Ann. Stat. 25, No. 6, 2512-2546 (1997; Zbl 0894.62041)] under different kinds of smoothness assumptions. It was shown that both the optimal rate of testing and the structure of optimal (in rate) tests depend on smoothness parameters which are usually unknown in practical applications. In this paper the problem of adaptive (assumption free) testing is considered. It is shown that adaptive testing without loss of efficiency is impossible. An extra log log-factor is inessential but unavoidable payment for the adaptation. A simple adaptive test based on wavelet technique is constructed which is nearly minimax for a wide range of Besov classes. Cited in 1 ReviewCited in 92 Documents MSC: 62G10 Nonparametric hypothesis testing 62G20 Asymptotic properties of nonparametric inference 62G35 Nonparametric robustness 62M99 Inference from stochastic processes Keywords:stochastic differential equation; signal detection; minimax hypothesis testing; thresholding; wavelet decomposition; adaptive testing; nonparametric alternative Citations:Zbl 0798.62057; Zbl 0798.62058; Zbl 0798.62059; Zbl 0894.62041 PDF BibTeX XML Cite \textit{V. G. Spokoiny}, Ann. Stat. 24, No. 6, 2477--2498 (1996; Zbl 0898.62056) Full Text: DOI References: [1] AMOSOVA, N. N. 1972. On limit theorem for probabilities of moderate deviations. Vestnik Z. Leningrad. Univ. 13 5 14. In Russian. Z. · Zbl 0273.60015 [2] BROWN, L. D. and LOW, M. G. 1996. Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384 2398. Z. · Zbl 0867.62022 [3] BROWN, L. D. and LOW, M. G. 1992. Superefficiency and lack of adaptability in functional estimation. Technical report, Cornell Univ.Z. [4] COHEN, A., DAUBECHIES, I., JAWERTH, B. and VIAL, P. 1993. Multiresolution analysis, wavelets, and fast algorithms on an interval. C. R. Acad. Sci. Paris Ser. I Math. 316 417 421. Ź. · Zbl 0768.42015 [5] COHEN, A., DAUBECHIES, B. and VIAL, P. 1993. Wavelets on the interval and fast wavelet transforms. Applied and Computational Harmonic Analy sis Ser. I Math. 1 54 81. Ź. · Zbl 0795.42018 [6] DAUBECHIES, I. 1992. Ten Lectures on Wavelets. SIAM, Philadelphia. Z. · Zbl 0776.42018 [7] DELy ON, B. and JUDITSKY, A. 1995. Wavelet estimators, global error measures: revisited. J. Applied Comp. and Harmonic Analy sis. To appear. Z. · Zbl 0832.62028 [8] DONOHO, D. L. and JOHNSTONE, I. M. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425 455. Z. JSTOR: · Zbl 0815.62019 [9] DONOHO, D. L. and JOHNSTONE, I. M. 1995. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200 1204. Z. JSTOR: · Zbl 0869.62024 [10] DONOHO, D. L., JOHNSTONE, I. M., KERKy ACHARIAN, G. and PICARD, D. 1994. Wavelet shrinkage: Z. asy mptopia? with discussion. J. Roy. Statist. Soc. Ser. B 57 301 369. Z. JSTOR: [11] EFROMOVICH, S. and PINSKER, M. S. 1984. Learning algorithm for nonparametric filtering. Automat. Remote Control 11 1434 1440. Z. · Zbl 0637.93069 [12] ERMAKOV, M. S. 1990. Minimax detection of a signal in a white Gaussian noise. Theory Probab. Appl. 35 667 679. Z. · Zbl 0744.62117 [13] GOLUBEV, G. K. 1990. Quasilinear estimates of signal in L. Problems Inform. Transmission 26 2 15 20. Z. · Zbl 0723.62026 [14] HARDLE, W. and MAMMEN, E. 1993. Comparing nonparametric versus parametric regression \" fits. Ann. Statist. 21 1926 1947. Z. · Zbl 0795.62036 [15] INGSTER, YU. I. 1982. Minimax nonparametric detection of signals in white Gaussian noise. Problems Inform. Transmission 18 130 140. Z. · Zbl 0499.94002 [16] INGSTER, YU. I. 1984a. Asy mptotic minimax testing of nonparametric hy pothesis on the distribution density of an independent sample. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Z. Inst. Steklov 136 74 96. In Russian. Z. [17] INGSTER, YU. I. 1984b. An asy mptotic minimax test of nonparametric hy pothesis about spectral density. Theory Probab. Appl. 29 846 847. Z. [18] INGSTER, YU. I. 1993. Asy mptotically minimax hy pothesis testing for nonparametric alternatives I III. Math. Methods Statist. 2 85 114; 3 171 189; 4 249 268. Z. · Zbl 0798.62059 [19] KERKy ACHARIAN, G. and PICARD D. 1993. Density estimation by kernel and wavelet method, optimality in Besov space. Statist. Probab. Lett. 18 327 336. Z. · Zbl 0793.62019 [20] LEHMANN, E. L. 1959. Testing Statistical Hy pothesis. Wiley, New York. [21] LEPSKI, O. V. 1990. One problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 459 470. Z. · Zbl 0725.62075 [22] LEPSKI, O. V. 1991. Asy mptotic minimax adaptive estimation. 1. Upper bounds. Theory Probab. Appl. 36 645 659. Z. · Zbl 0776.62039 [23] LEPSKI, O. V., MAMMEN, E. and SPOKOINY, V. G. 1997. Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. To appear. Z. · Zbl 0885.62044 [24] LEPSKI, O. V. and SPOKOINY, V. G. 1995a. Optimal pointwise adaptive methods in nonparametric estimation. Unpublished manuscript. Z. · Zbl 0894.62041 [25] LEPSKI, O. V. and SPOKOINY, V. G. 1995b. Minimax nonparametric hy pothesis testing: the case of an inhomogeneous alternative. Bernoulli. To appear. Z. [26] MARRON, J. S. 1988. Automatic smoothing parameter selection: a survey. Empir. Econ. 13 187 208. Z. [27] MEy ER, Y. 1990. Ondelettes. Herrmann, Paris. Z. [28] NEUMANN, M. and SPOKOINY, V. 1995. On the efficiency of wavelet estimators under arbitrary error distributions. Math. Methods Statist. 4 137 166. Z. · Zbl 0845.62034 [29] NUSSBAUM, M. 1996. Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399 2430. Z. · Zbl 0867.62035 [30] PETROV, V. V. 1975. Sums of Independent Random Variables. Springer, New York. Z. · Zbl 0322.60043 [31] POLJAK, B. T. and TSy BAKOV, A. B. 1990. Asy mptotic optimality of C -test for the orthogonal p series estimation of regression. Theory Probab. Appl. 35 293 306. Z. · Zbl 0721.62042 [32] TRIEBEL, H. 1992. Theory of Function Spaces II. Birkhauser, Basel. \" · Zbl 0763.46025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.