Hydromagnetic flow over a surface stretching with a power-law velocity. (English) Zbl 0899.76375

Summary: The boundary layer flow due to a plate stretching with a power-law velocity distribution in the presence of a transverse magnetic field is studied. A special form of the magnetic field is chosen so as to yield similarity equations. First, linearized solutions for the case of large magnetic parameters are presented. Then, an accurate expression for the skin friction coefficient is derived using Crocco’s transformation. This is followed by a direct numerical solution of the resulting boundary value problem using a shooting method.


76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI


[1] Crane, L. J., Z. angew. Math. Phys., 21, 645 (1970)
[2] Danberg, J. E.; Fansler, K. S., Q. Appl. Math., 34, 305 (1976)
[3] Afzal, N.; Varshney, I. S., Warme Stoff., 14, 289 (1980)
[4] Kuiken, H. K., I.M.A. J. Appl. Math., 27, 387 (1981)
[5] Banks, W. H.H., J. Mecan. Theor. Appl., 2, 375 (1983)
[6] Banks, W. H.H.; Zaturska, M. B., I.M.A. J. Appl. Math., 36, 263 (1986)
[7] Afzal, N., Int. J. Heat Mass Transfer, 36, 1128 (1993)
[8] Chakrabarti, A.; Gupta, A. S., Q. Appl. Math., 37, 73 (1979)
[9] Chiam, T. C., Z. angew. Math. Mech., 62, 565 (1982)
[10] Heruska, M. W.; Watson, L. T.; Sankara, K. K., Computers Fluids, 14, 117 (1986)
[11] Chen, C. K.; Hsu, T. H., Computers Math. Applic., 21, 37 (1991)
[12] Sapunkov, Ya. G., Mekh. Zhid. Gaza, 2, 77 (1967)
[13] Djukic, Dj. S., A. I. Chem. Engng J., 19, 1159 (1973)
[14] Djukic, Dj. S., J. App. Mech., Trans. ASME, 41, 822 (1974)
[15] Djukic, Dj. S., Phys. Fluids, 17, 2184 (1974) · Zbl 0272.76020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.