Szyszkowicz, Barbara (ed.) Asymptotic methods in probability and statistics. A volume in honour of Miklós Csörgő. ICAMPS ’97, an international conference at Carleton Univ., Ottawa, Ontario, Canada, July 1997. (English) Zbl 0901.00049 Amsterdam: North-Holland/ Elsevier. xxxiii, 889 p. Dfl 475.00; $ 273.00 (1998). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Csörgő, Sándor, Rényi-mixing of occupation times, 3-12 [Zbl 0936.60020]Kowalski, Piotr; Rychlik, Zdzisław, Limit theorems for maximal random sums, 13-29 [Zbl 0933.60009]Lewis, Thomas M., Limit theorems for partial sums of quasi-associated random variables, 31-48 [Zbl 0935.60011]Peligrad, Magda, On the central limit theorem for triangular arrays of \(\varphi\)-mixing sequences, 49-55 [Zbl 0928.60009]Berkes, I., Results and problems related to the pointwise central limit theorem, 59-96 [Zbl 0979.60014]Csáki, E.; Földes, A., On two ergodic properties of self-similar processes, 97-111 [Zbl 0934.60035]Dabrowski, André Robert; Dehling, Herold, Jump diffusion approximation for a Markovian transport model, 115-125 [Zbl 0936.60071]Deheuvels, Paul, On the local oscillations of empirical and quantile processes, 127-134 [Zbl 0934.60038]Glynn, Peter W., Strong approximations in queueing theory, 135-150 [Zbl 0937.60021]Shorack, Galen R., Applications of weighted approximations via quantile inequalities, 151-167 [Zbl 0929.62057]Ghoudi, Kilani; Remillard, Bruno, Empirical processes based on pseudo-observations, 171-197 [Zbl 0959.62044]Massart, P.; Rio, E., A uniform Marcinkiewicz-Zygmund strong law of large numbers for empirical processes, 199-211 [Zbl 0933.60015]Takács, Lajos, On the comparison of theoretical and empirical distribution functions, 213-231 [Zbl 0955.62050]Grill, Karl, A random walk on a random walk path, 235-242 [Zbl 0932.60051]Révész, Pál, Long excursions and iterated processes, 243-249 [Zbl 0938.60036]Keprta, Stanislav, Integral tests for some processes related to Brownian motion, 253-279 [Zbl 0931.60025]Li, Wenbo V., A lim inf result for the Brownian motion, 281-292 [Zbl 0931.60070]Lin, Z. Y.; Qin, Y. C., On the increments of \(l^\infty\)-valued Gaussian processes, 293-302 [Zbl 0937.60028]Lu, C.-R.; Yu, H., A note on how small are the increments of a fractional Wiener process?, 303-310 [Zbl 0927.60048]Steinebach, J., On a conjecture of Révész and its analogue for renewal processes, 311-322 [Zbl 0990.60026]Xiao, Yimin, Asymptotic results for self-similar Markov processes, 323-340 [Zbl 0936.60060]Chen, Bin, On Strassen’s version of the law of the iterated logarithm for the two-parameter Wiener process, 343-358 [Zbl 0936.60031]Ivanoff, B. Gail; Weber, N. C., A maximal inequality and tightness for multiparameter stochastic processes, 359-369 [Zbl 0936.60034]Csáki, E.; Földes, A., On asymptotic independence of partial sums, 373-381 [Zbl 0932.60025]Hanson, D. L., Limiting sigma-algebras – some counterexamples, 383-385 [Zbl 0930.60022]Hu, Yueyun; Yor, Marc, Convergence in law and convergence of moments: An example related to Bessel processes, 387-397 [Zbl 0933.60021]Dawson, D. A.; Gärtner, J., Analytic aspects of multilevel large deviations, 401-440 [Zbl 0931.60068]Feng, Shui, Large deviation upper bound and its application to measure valued processes, 441-451 [Zbl 0933.60012]Khoshnevisan, Davar; Shi, Zhan, Gaussian measure of a small ball and capacity in Wiener space, 453-465 [Zbl 0933.60036]Shao, Qi-Man, Recent developments on self-normalized limit theorems, 467-480 [Zbl 0936.60025]Burdzy, Krzysztof; Frankel, David M.; Pauzner, Ady, On the time and direction of stochastic bifurcation, 483-500 [Zbl 0931.60046]Aly, Emad-Eldin A. A., Change point tests for randomly censored data, 503-513 [Zbl 1042.62536]Correa, José Andrés, Weighted approximations of parameters-estimated empirical processes and changepoint analysis, 515-549 [Zbl 0980.62077]Freidlin, Boris; Gastwirth, Joseph L., The application of change point tests to data occurring in fair hiring cases, 551-562 [Zbl 1042.62629]Gombay, Edit; Horváth, Lajos, Parameter estimated standardized \(U\)-statistics, 563-576 [Zbl 0956.62042]Hušková, M., Remarks on test procedures for gradual changes, 577-583 [Zbl 0945.62023]Lombard, F., Tests for constancy of a mean, 585-594 [Zbl 0922.62029]Müller, Hans-Georg, Non-parametric models for non-smooth functions, 595-609 [Zbl 0922.62021]Parzen, Emanuel, Statistical methods mining, two sample data analysis, comparison distributions, and quantile limit theorems, 611-617 [Zbl 0922.62042]Rejtő, Lídia; Tusnády, Gábor, On the Cox regression, 621-637 [Zbl 0922.62024]Rothmann, Mark D.; Russo, Ralph P., Some further results on the limiting proportion of types, 639-646 [Zbl 0927.60042]Yu, H., Estimation of percentile residual lifetime processes for stationary observations, 647-666 [Zbl 0954.62122]Zitikis, Ričardas, The Vervaat process, 667-694 [Zbl 0933.62043]Burke, Murray D., A Gaussian bootstrap approach to estimation and tests, 697-706 [Zbl 0922.62025]Eastwood, Brian J.; Eastwood, Vera R., Tabulating weighted sup-norm functionals of Brownian bridges via Monte Carlo simulation, 707-719 [Zbl 0927.60017]Haiman, George, Upper and lower bounds for the tail of the invariant distribution of some \(AR(1)\) processes, 723-730 [Zbl 0926.62080]Rosenblatt, Murray, Non Gaussian autoregressive and moving average schemes, 731-737 [Zbl 0946.62086]Kulperger, R. J., A regression residual process, 741-757 [Zbl 0945.62086]Major, Péter; Rejtő, Lídia, A note on nonparametric estimations, 759-774 [Zbl 0922.62018]Portnoy, Stephen, Convergence rates for maximal score estimators in binary response regressions, 775-783 [Zbl 0954.62064]Alvo, M.; Cabilio, P., Applications of Hamming distance to the analysis of block designs, 787-799 [Zbl 0922.62075]Babb, J.; Rogatko, A.; Zacks, S., Bayesian sequential and fixed sample testing of multihypotheses, 801-809 [Zbl 0922.62079]Inglot, Tadeusz; Kallenberg, Wilbert C. M.; Ledwina, Teresa, Vanishing shortcoming of data driven Neyman’s tests, 811-829 [Zbl 0956.62040]Csőrgö, Sándor; Viharos, László, Estimating the tail index, 833-881 [Zbl 1042.62543]Tomkins, R. J., Stability criteria for order statistics of order statistics, 883-889 [Zbl 0922.62041] Cited in 2 Documents MSC: 00B25 Proceedings of conferences of miscellaneous specific interest 60-06 Proceedings, conferences, collections, etc. pertaining to probability theory Keywords:Ottawa, Ontario (Canada); Proceedings; Conference; ICAMPS ’97; Asymptotic methods; Probability; Statistics Biographic References: Csörgő, Miklós PDFBibTeX XMLCite \textit{B. Szyszkowicz} (ed.), Asymptotic methods in probability and statistics. A volume in honour of Miklós Csörgő. ICAMPS '97, an international conference at Carleton Univ., Ottawa, Ontario, Canada, July 1997. Amsterdam: North-Holland/ Elsevier (1998; Zbl 0901.00049)