Gesztesy, F.; Ünal, M. Perturbative oscillation criteria and Hardy-type inequalities. (English) Zbl 0903.34030 Math. Nachr. 189, 121-144 (1998). The authors compare oscillation properties of solutions to Sturm-Liouville equations \(\tau_0 \psi_0= \lambda \psi_0\) and \(\tau\psi =\lambda \psi\), where \(\tau_0\) is of the type \[ \tau_0= -{d\over dx} p_0(x) {d\over dx} +q_0(x) \] and its perturbation \(\tau\) is of the form \(\tau= \tau_0+ q(x)\), \(x\in (a,b)\), \(-\infty\leq a<b \leq\infty\).Under certain conditions on \(q(x)\), if \((\tau_0 -\lambda_0)\) is nonoscillatory near \(b\) (resp. \(a)\) for some \(\lambda_0 \in \mathbb{R}\) (with \(\psi_0 (\lambda_0,x)\) denoting a positive solution to \(\tau_0 \psi= \lambda_0 \psi)\), the authors establish two theorems for that \((\tau- \lambda_0)\) be nonoscillatory or be oscillatory near \(b\) (resp. \(a)\).The special case \(p_0= \psi_0=1\), \(q_0= \lambda_0 =0\) in the first theorem stands for the original oscillation criterion by A. Kneser [Math. Ann. Qd 42, 409-435 (1893; JFM 25.0533.01)] and in the second one represents a generalization of Kneser’s result due to H. Weber (1912).Finally, making use of certain types of factorizations of general Sturm-Liouville differential expressions on \((a,b)\), the authors prove a natural generalization of Hardy’s inequality. Reviewer: N.Hayek (La Laguna) Cited in 32 Documents MSC: 34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations 34B24 Sturm-Liouville theory Keywords:Kneser’s oscillation criterion; Sturm-Liouville equations; JFM 25.0533.01; Hardy’s inequality Citations:JFM 25.0533.01 PDF BibTeX XML Cite \textit{F. Gesztesy} and \textit{M. Ünal}, Math. Nachr. 189, 121--144 (1998; Zbl 0903.34030) Full Text: DOI OpenURL References: [1] Barrett, Adv. Math. 3 pp 445– (1969) [2] : Leçons de Méthodes de Sturm, Gauthier-Villars, Paris, 1917 [3] : Disconjugacy, Lecture Notes in Mathematics 220, Springer-Verlag, Berlin-Heidelberg-New York, 1971 [4] and : Linear Operators, Part II: Spectral Theory, Wiley, Interscience, New York, 1988 [5] Gesztesy, Math. Phys. 20 pp 93– (1984) [6] Gesztesy, Acta Physica Austriaca 51 pp 259– (1979) [7] Gesztesy, Amer. Math. Soc. 335 pp 329– (1993) [8] Gesztesy, J. Math. 118 pp 571– (1996) [9] Gesztesy, J. Funct. Anal. 98 pp 311– (1991) [10] Hardy, Z. 6 pp 314– (1920) [11] Hardy, Math. 57 pp 12– (1928) [12] , and : Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1991 [13] Hartman, J. Math. 70 pp 764– (1948) [14] : Ordinary Differential Equations, 2nd ed., Birkhäuser, Boston, 1982 [15] Hille, Amer. Math. Soc. 64 pp 234– (1948) [16] : Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, 1969 · Zbl 0179.40301 [17] Kalf, J. London Math. Soc. 17 pp 511– (1978) [18] Kalf, J. Funct. Anal. 10 pp 114– (1972) [19] : Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1980 [20] Klaus, Phys. Acta 55 pp 49– (1982) [21] : Discrete Spectrum for a Periodic Schrödinger Operator Perturbed by a Decreasing Potential, in ”Order, Disorder and Chaos in Quantum Systems”, and (eds.), Birkhäuser, Basel, 1990, pp. 109–114 [22] Kneser, Ann. 42 pp 409– (1893) [23] : Oscillation Theory, Lecture Notes in Mathematics 324, Springer-Verlag, Berlin-Heidelberg-New York, 1973 · Zbl 0258.35001 [24] and : Hardy-Type Inequalities, Longman, New York, 1990 [25] and : Methods of Modern Mathematical Physics IV. Analysis of Operators, Academic Press, New York, 1978 [26] : Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York, 1980 · Zbl 0459.34001 [27] Rellich, Ann. 122 pp 343– (1951) [28] Rofe-Beketov, Sov. Math. Dokl. 5 pp 689– (1964) [29] Rosenberger, J. London Math. Soc. 31 pp 501– (1985) [30] Schmincke, Roy. Soc. Edinburgh 80A pp 67– (1978) · Zbl 0395.47022 [31] : Quantum Mechanics for Hamiltonians Denned as Quadratic Forms, Princeton University Press, Princeton, 1971 [32] Simon, Ann. Phys. 97 pp 215– (1976) · Zbl 0325.35029 [33] Sturm, J. Math. Pures. Appl. 1 pp 106– (1836) [34] : Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968 [35] : Die Partiellen Differential-Gleichungen der Mathematischen Physik, Volume 2, 5th ed., Vieweg, Braunschweig, 1912 [36] Willet, Adv. Math. 3 pp 594– (1969) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.