×

Open \(p\)-branes. (English) Zbl 0903.53053

Summary: It is shown that many of the \(p\)-branes of type II string theory and \(d=11\) supergravity can have boundaries on other \(p\)-branes. The rules for when this can and cannot occur are derived from charge conservation. For example, it is found that membranes in \(d=11\) supergravity and IIA string theory can have boundaries on fivebranes. The boundary dynamics are governed by the self-dual \(d=6\) string. A collection of \(N\) parallel fivebranes contains \(\frac 1 2\cdot|N(N-1)\) self-dual strings which become tensionless as the fivebranes approach one another.

MSC:

53Z05 Applications of differential geometry to physics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Callan, C.; Harvey, J.; Strominger, A., Nucl. Phys. B, 367, 60 (1991)
[2] Horowitz, G.; Strominger, A., Nucl. Phys. B, 360, 197 (1991)
[3] Polchinski, J.
[4] Dai, J.; Leigh, R.; Polchinski, J., Mod. Phys. Lett. A, 4, 2073 (1989)
[5] Horava, P., Phys. Lett. B, 231, 251 (1989)
[6] Witten, E.
[7] Polchinski, J.; Witten, E.
[8] Bershadsky, M.; Sadov, V.; Vafa, C.
[9] Ooguri, H.; Vafa, C.
[10] Sen, A.
[11] Li, M.
[12] Callan, C.; Klebanov, I.
[13] Vafa, C.
[14] Witten, E.
[15] Bachas, C.
[16] Harvey, J.; Strominger, A.
[17] Hull, C.; Townsend, P., Nucl. Phys. B, 348, 109 (1995)
[18] Witten, E., Nucl. Phys., 443, 85 (1995)
[19] Strominger, A., Nucl. Phys. B, 451, 96 (1995)
[20] Duff, M.; Lu, J., Phys. Lett. B, 273, 409 (1991)
[21] Polchinski, J.; Strominger, A.
[22] Bergshoeff, E.; Sezgin, E.; Townsend, P., Ann. Phys. B, 185, 330 (1988)
[23] Howe, P.; Sierra, G.; Townsend, P., Nucl. Phys. B, 221, 331 (1983)
[24] Becker, K.; Becker, M.; Strominger, A.
[25] Guven, R., Phys. Lett. B, 276, 49 (1992)
[26] Kaplan, D.; Michelson, J.
[27] Duff, M.; Lu, J., Nucl. Phys. B, 416, 301 (1994)
[28] Witten, E.
[30] Romans, L., Nucl. Phys. B, 276, 71 (1986)
[31] Carlip, S.; Kogan, I., Mod. Phys. Lett. A, 6, 171 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.