DeSanto, John A. (ed.) Mathematical and numerical aspects of wave propagation. Proceedings of the 4th international conference held at Mines in Golden, CO, USA, June 1–5, 1998. (English) Zbl 0904.00054 Proceedings in Applied Mathematics. Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics. 800 p. (1998). Show indexed articles as search result. The articles of this volume will be reviewed individually. The preceding conference (3rd, 1995) has been reviewed (see Zbl 0846.00038).Indexed articles:Collins, Michael D.; Siegmann, William L., Parabolic equation techniques for wave propagation, 3-11 [Zbl 0940.35013]Bonnet-Ben Dhia, Anne-Sophie, Mathematical analysis of conductive and superconductive transmission lines, 12-21 [Zbl 0957.78018]Colton, David L., Recent progress on the inverse electromagnetic scattering problem for anisotropic media, 22-33 [Zbl 0963.78020]Kress, Rainer, Numerical methods in inverse obstacle scattering with reduced data, 34-43 [Zbl 0940.65136]Rudnaya, Svetlana; Santosa, Fadil; Chiareli, Alessandra, Optimal design of a diffractive optical element, 44-53 [Zbl 1028.78513]Rauch, Jeffrey, Recent results in nonlinear geometric optics, 54-55 [Zbl 0957.78001]Després, Bruno, Quadratic functional and integral equations for harmonic wave equations, 56-64 [Zbl 0942.35013]Dean, E. J.; Glowinski, R.; Pan, T. W., A wave equation approach to the numerical simulation of incompressible viscous fluid flow modelled by the Navier-Stokes equations, 65-74 [Zbl 0959.76070]Adams, R. J.; Awadallah, R.; Toporkov, J.; Brown, G. S., Computational methods for rough surface scattering: The method of ordered multiple interactions, 79-83 [Zbl 1028.78520]Voronovich, A. G., Non-classical approaches in the theory of wave scattering from rough surfaces, 84-88 [Zbl 0937.78008]Milder, D. Michael, Operator expansion methods in rough-surface scattering – a progress report, 89-93 [Zbl 0937.78007]DeSanto, John A., Scattering from a periodic interface, 94-99 [Zbl 0937.35122]Martin, P. A., Diffraction by non-planar cracks, 102-106 [Zbl 0959.74036]Movchan, A. B., Asymptotic analysis of a crack-defect interaction, 107-111 [Zbl 0966.74062]Chen, Yu, Recursive linearization for inverse scattering, 114-117 [Zbl 0937.35120]Chew, W. C.; Ergin, A.; Jandhyala, V.; Jin, J.; Lu, C. C.; Michielssen, E.; Shanker, B.; Sheng, X.; Song, J. M.; Zhao, J. S., Fast electromagnetic scattering algorithm using multilevel and hybrid techniques, 118-122 [Zbl 0949.78025]Beylkin, G., On applications of unequally spaced fast Fourier transforms, 123-127 [Zbl 0948.65149]Fouque, Jean-Pierre, Wave propagation in randomly layered media, 130-133 [Zbl 0982.74543]Freilikher, V., Transport and localization in systems with surface disorder, 134-138 [Zbl 1042.82564]Blair, Steve; Wagner, Kelvin H., Higher-order evolution equation for vectorial spatio-temporal optical solitary waves, 141-144 [Zbl 1051.35511]Ablowitz, M. J.; Biondini, G.; Chakravarty, S., Soliton communications and wavelength-division multiplexing, 145-149 [Zbl 0940.35182]Yang, Tian-Shiang; Kath, William L.; Turitsyn, Sergei K., Optimal launching of solitons in dispersion-managed optical fibers, 150-154 [Zbl 1051.35506]Ting, T. C. T., Change between the six groups of anisotropic elasticity solutions by a continuous change of elastic constants, 157-161 [Zbl 0970.74018]Chandler-Wilde, S. N.; Ross, C. R.; Zhang, Bo, Scattering by rough surfaces, 164-168 [Zbl 0937.35119]Calvo-Perez, O.; Greffet, J. J.; Sentenac, A., A volume formalism to study the diffusion of electromagnetic waves by two-dimensional rough surfaces, 169-173 [Zbl 1051.78503]Saillard, Marc; Guérin, Charles-Antoine; Holschneider, Matthias, Characterization of multi-scale rough surfaces, 174-178 [Zbl 0963.78016]Gray, L. J.; Morris, M. D., Application of the symmetric Galerkin boundary integral method for elastic wave scattering, 181-185 [Zbl 0960.74070]Schwengler, Thomas; Kuester, Edward F., Residual error bounds in various norms for solutions of a Fredholm integral equation of the first kind, 186-190 [Zbl 0942.65149]Chao, Joseph C.; Rizzo, Frank J., Boundary integral equations approach to electromagnetic wave phenomena, 191-196 [Zbl 0949.78004]Albert, John; Linares, Felipe, Stability of solitary-wave solutions to model systems for internal waves, 200-204 [Zbl 0940.35130]Li, Y. A., Solitary-wave solutions of a nonlinearly dispersive Hamiltonian system, 205-208 [Zbl 1051.35507]Chen, Min, Primary results on simulation of a new kind of traveling wave of permanent form, 209-213 [Zbl 0958.76057]Liu, Yue, Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, 214-219 [Zbl 1051.35508]Tom, Michael M., Remarks on global solutions of some generalizations of the KP equations, 220-224 [Zbl 1051.35509]Carlson, Robert, Hill’s equation for a regular graph, 227-231 [Zbl 0942.34068]McLaughlin, Joyce R.; Wang, Shixiao, Recovery of a vertically stratified seabed in shallow water, 232-236 [Zbl 0981.76083]Sylvester, John; Winebrenner, Dale P., 1-D inverse scattering via the Riesz transform, 239-243 [Zbl 0937.78011]Gilbert, Robert P.; Hackl, Klaus, Inverse acoustic problems in shallow oceans, 244-248 [Zbl 0982.76555]de Hoop, Maarten V., Direct, leading-order asymptotic, inverse scattering based on generalized Bremmer series, 249-253 [Zbl 0937.35121]Wall, David J. N.; Kristensson, Gerhard, Inverse problems associated with simple nonlinear wave equations, 254-258 [Zbl 1051.35515]Fishman, Louis, Exact, uniform asymptotic, and numerical constructions of Helmholtz operator symbols, 259-263 [Zbl 0937.35028]Symes, William W.; Zhang, Chaoming, Electromagnetic modeling and inverse scattering in dispersive media, 266-269 [Zbl 0958.78019]Bruno, Oscar P.; Sei, Alain, A fast high-order solver for problems of scattering by heterogeneous bodies, 270-274 [Zbl 0949.78024]Smyth, Noel F.; Kath, William L., Radiative losses due to pulse interactions in birefringent nonlinear optical fibers, 275-279 [Zbl 1051.78511]Bruno, Oscar P.; Reitich, Fernando, Boundary variations and analytic continuation in electromagnetic and acoustic scattering, 280-284 [Zbl 1051.78502]Antoine, Xavier, A numerical study of a scattering problem involving a generalized impedance boundary condition using the on-surface radiation condition method, 287-291 [Zbl 0943.78014]Haddar, H.; Joly, P., An asymptotic approach of the scattering of electromagnetic waves by thin ferromagnetic coatings, 292-296 [Zbl 1051.78505]Ammari, H.; Latiri-Grouz, C., Approximate boundary conditions for thin periodic coatings, 297-301 [Zbl 0963.78015]Bendali, Abderrahmane; Vernhet, Laurent, Boundary element solution of a scattering problem involving a generalized impedance boundary condition, 302-306 [Zbl 0940.65137]Croisille, Jean-Pierre; Lebeau, Gilles, Computation of the acoustic wave diffracted by an immersed elastic wedge, 309-313 [Zbl 0974.74582]Casadei, Folco; Gabellini, Eros; Maggio, Fabio; Quarteroni, Alfio, Wave propagation in complex media by the mortar approximation, 314-318 [Zbl 0974.74571]Aubry, Denis; Clouteau, Didier; Bing, Tie, Adaptive strategy for transient elastodynamics, 319-321 [Zbl 0974.74570]Joly, P.; Bécache, E.; Tsogka, C., Fictitious domain method applied to the scattering by a crack of transient elastic waves in anisotropic media: A new family of mixed finite elements leading to explicit schemes, 322-326 [Zbl 0969.74603]Kuttler, James R.; Dockery, G. Daniel, A review of the development of the parabolic equation split-step Fourier method for electromagnetic propagation in the troposphere, 329-333 [Zbl 1017.78507]Popov, A. V.; Kopylov, Yu. V.; Vinogradov, A. V.; Attwood, D. T., Parabolic equation techniques for X-ray optics, 334-338 [Zbl 0943.78002]Rino, Charles L., Rough surface scattering using forward marching methods, 339-343 [Zbl 0943.78008]Levy, Mireille F.; Zaporozhets, Andrew A., Electromagnetic scattering with PE techniques, 344-347 [Zbl 0943.78007]Thomson, David J.; Brooke, Gary H., Non-local boundary conditions for 1-way wave propagation, 348-352 [Zbl 0982.76534]Lafitte, Olivier, The wave diffracted by a wedge with mixed boundary conditions, 355-359 [Zbl 0963.78018]Burq, Nicolas, Scattering resonances generated by corners, 360-363 [Zbl 1051.35505]Assous, F.; Ciarlet, P. jun.; Raviart, P.-A.; Segré, J., The solution of Maxwell’s equations in a non-convex polyhedron. I: Saddle-point approach and singularities, 364-368 [Zbl 1051.35510]Hazard, Christophe; Lohrengel, Stephanie, The solution of Maxwell’s equations in a non-convex polyhedron. II: A singular field method, 369-373 [Zbl 1051.35512]Gedney, Stephen D., Time dependent solutions of Maxwell’s equations based on explicit and implicit finite element and finite difference schemes on high performance parallel computers, 376-380 [Zbl 0943.78018]Ober, Curtis C.; Gjertsen, Robert K. jun.; Minkoff, Susan; Womble, David E., 3D finite difference seismic migration with parallel computers, 381-385 [Zbl 0974.74581]Karrenbach, M.; Jacob, M.; Philippsen, M., Parallelizing large-scale geophysical applications in Java, 386-390 [Zbl 0938.74512]Sanders, Jan A.; Wang, Jing Ping, On the classification of integrable systems, 393-397 [Zbl 0940.35188]Verheest, Frank, Integrability, invariants and bi-Hamiltonian structure of vector nonlinear evolution equations, 398-402 [Zbl 1051.37505]Göktaş, Ünal; Hereman, Willy, Invariants and symmetries for partial differential equations and lattices, 403-407 [Zbl 0940.35014]Ablowitz, M. J.; Chakravarty, S.; Halburd, R., The Darboux-Halphen system and the singularity structure of its solutions, 408-412 [Zbl 1051.34500]Şafak, Erdal, Seismic wave propagation in soil-structure systems, 415-419 [Zbl 0938.74507]Papageorgiou, Apostolos S., Modelling of site effects for earthquake engineering applications, 420-424 [Zbl 0938.74506]Zhang, Ray Ruichong; Pak, Ronald Y. S., On three-dimensional wave propagation and scattering in a heterogeneous irregular medium, 425-429 [Zbl 0973.74585]Folguera, Alejandra; Harris, John G., Propagation in a slowly varying elastic waveguide, 434-436 [Zbl 0974.74531]Dermenjian, Yves; Gaitan, Patricia, Study of generalized eigenfunctions of a perturbed isotropic half-space, 437-439 [Zbl 0971.74045]Scandrett, C. L.; Frenzen, C. L., Bi-orthogonality relationships and scattering from material discontinuities, 440-442 [Zbl 0973.74581]Bouhennache, Tark, Some original properties of the dispersion curves and consequences, 443-445 [Zbl 0971.74044]Lott-Crumpler, Dawn A.; Antman, Stuart S.; Szymczak, William G., The quasilinear wave equation governing antiplane axisymmetric shearing: A numerical approach, 446-448 [Zbl 0982.74562]Hanyga, Andrzej, Asymptotic theory of seismic wave attenuation in porous media, 449-452 [Zbl 0982.74542]Cristofol, Michel, Essential spectrum and existence of guided waves in a stratified perturbed space, 453-455 [Zbl 0972.74036]Wadee, M. Khurram, Galerkin solutions to localization in elastic and visco-elastic buckling problems, 456-458 [Zbl 0938.74511]Turhan, Doğan; Ghaith, Mohamed, Transient wave propagation in filament wound cylindrical composites, 459-461 [Zbl 0941.74514]Han, Shifang; Otaigbe, J. U., Investigation on fiber spinning flow of polymer-viscoelastic fluid, 462-464 [Zbl 0973.76542]Chattopadhyay, Gayarti; Bhattacharyya, Rabindra Kumar, Wave propagation in a random granular elastic medium, 465-467 [Zbl 0974.74532]Bhattacharyya, Rabindra Kumar, Wave propagation in a random elastic layer overlying an elastic half-space, 468-470 [Zbl 0978.74040]Zhang, Bo; Chandler-Wilde, Simon N., An integral equation approach for rough surface scattering, 473-475 [Zbl 0937.78009]Bao, Gang, Diffraction by a periodic surface, 476-478 [Zbl 0958.78011]Arens, T., The scattering of plane elastic waves by one-dimensional periodic surfaces, 479-481 [Zbl 0979.74041]Chandler-Wilde, Simon N.; Rahman, Mizanur; Ross, Christopher R., A fast two-grid method for the impedance problem in a half-plane, 482-484 [Zbl 0946.65504]Evans, Richard B., Better a rough bottom than a rough surface, 485-487 [Zbl 0982.76554]Fuks, Iosif M.; Voronovich, Alexander G., Polarization ratio for radar backscattering from the concave rough surface, 488-490 [Zbl 0958.78012]Chavent, Guy; Clément, François, Seismic inversion in the presence of multiple reflections: The tabular 2D case, 493-495 [Zbl 0938.74508]Djellouli, Rabia; Farhat, Charbel, Sensitivity analysis of direct acoustic scattering problems with respect to shape, frequency and incident direction, 496-498 [Zbl 0982.76557]Crosta, Giovanni F., Shape reconstruction from {radar cross section, phase} data, 499-501 [Zbl 1051.78514]Alves, Carlos J. S., Inverse scattering with spherical incident waves, 502-504 [Zbl 0942.35038]Urbach, H. Paul, Determination of concentration profiles by regularized inversion of X-ray fluorescence intensities, 505-507 [Zbl 1051.82528]Hager, William W.; Rostamian, Rouben; Wang, Dongxing, The wave annihilation technique and the design of nonreflective coatings, 508-510 [Zbl 0940.35122]Weder, Ricardo, Multidimensional inverse problems in wave guides, 511-513 [Zbl 0952.76082]Coyle, Joseph, Inverse scattering in a layered medium, 514-516 [Zbl 0958.78017]Sheen, Dongwoo; Shepelsky, Dmitry, Inverse scattering problem for stratified uniaxial bianisotropic medium, 517-519 [Zbl 0957.78012]Cherkaeva, Elena, Inverse electromagnetic problem for lossy medium in intermediate range of frequencies, 520-522 [Zbl 0963.78021]Potthast, Roland, A point-source method in inverse electromagnetic scattering, 523-525 [Zbl 1051.78506]Borcea, Liliana, Network approximation of electromagnetic transport in high contrast conductive media, 526-528 [Zbl 0943.78020]Rosen, David L.; Lambrakos, Sam, Electroreflectivity measurements inverted with windowed response functions, 529-531 [Zbl 1051.78500]El Badia, A., Coefficient identification in a parabolic equation from input sources and partial boundary measurements, 532-534 [Zbl 1051.35513]Ammari, H.; Latiri-Grouz, C.; Nédélec, J.-C., Scattering of Maxwell’s equations with a Leontovich boundary condition, 537-539 [Zbl 0963.78017]Toselli, Andrea, Overlapping Schwarz methods for Maxwell’s equations in conductive media, 540-542 [Zbl 0943.78017]Elmkies, A.; Joly, P., Edge finite element with mass lumping for Maxwell’s equations, 543-545 [Zbl 0940.65107]Driscoll, Tobin A.; Fornberg, Bengt, Block pseudospectral methods for 2D Maxwell’s equations with discontinuous coefficients, 546-548 [Zbl 0943.78019]Bachelot, Alain; Bounhoure, Laurent; Pujols, Agnès, Coupling of finite elements and retarded potentials for an electromagnetic scattering problem by an inhomogeneous obstacle, 549-551 [Zbl 0943.78015]Takada, Jun-ichi; Araki, Kiyomichi, A sparse matrix technique for the numerical solution of boundary value problem in 2-dimensional electromagnetic scattering using wavelet bases, 552-554 [Zbl 0943.78013]Vay, Jean-Luc, A new FDTD scheme for the wave equation. Application to multiscale electromagnetic plasma simulation, 555-557 [Zbl 0982.76535]Feng, Xiaobing, New radiation boundary conditions for the time dependent Maxwell equations, 558-560 [Zbl 0957.78006]Hyman, James M.; Shashkov, Mikhail, Mimetic discretization for Maxwell’s equations and the equations of magnetic diffusion, 561-563 [Zbl 0949.78021]Balian, Roger; Niez, Jean-Jacques, Effects of a finite screening length on the absorption of electromagnetic waves, 564-566 [Zbl 0940.35189]Petropoulos, Peter G., Well-posed perfectly matched layers for the numerical solution of Maxwell’s equations in rectangular, cylindrical, and spherical coordinates, 567-569 [Zbl 0949.78026]Rahmouni, Adib, A mathematical analysis of the perfectly matched layer method for electromagnetism, 570-572 [Zbl 0957.78008]de Forest Boyer, Donald; Leader, Jeffery J., Using measurements of path loss and a parabolic wave equation to estimate refractivity parameters, 575-578 [Zbl 1051.78507]Naugolnykh, Konstantin; Shang, E. C.; Wang, Yun-Yu, Arrival times treatment for remote acoustic sensing in a complex propagation environment, 579-581 [Zbl 0938.76581]Larsson, Elisabeth; Abrahamsson, Leif, Parabolic wave equations versus the Helmholtz equation in ocean acoustics, 582-584 [Zbl 0938.76574]Dougalis, V. A.; Flouri, E. T.; Kampanis, N. A., A finite element method for the Helmholtz equation in underwater acoustics, 585-587 [Zbl 0939.76564]Sundström, Arne; Karasalo, Ilkka, A high-order PE-method for multi-layered media, 588-590 [Zbl 0939.74608]Kim, Seongjai; Symes, William W.; El-Mageed, Maissa A., Superconvergent difference formulas for travel-times and amplitudes, 591-593 [Zbl 0938.76575]LeVeque, Randall J., CLAWPACK and AMRCLAW – software for high-resolution Godunov methods, 594-596 [Zbl 0939.76571]Mead, Jodi L.; Renaut, Rosemary A., High order methods for problems in computational aeroacoustics, 597-599 [Zbl 0973.76591]Soccorsi, Eric, Limiting absorption principle for the Maxwell operator in bihomogeneous propagation media, 600-602 [Zbl 1017.78502]Fogarty, Tiernan; LeVeque, Randall J., High-resolution finite volume methods for acoustics in a rapidly-varying heterogeneous medium, 603-605 [Zbl 0973.76578]Hebermehl, Georg; Schlundt, Rainer; Zscheile, Horst; Heinrich, Wolfgang, Numerical solution of the eigenmode problem for microwave transmission lines, 606-608 [Zbl 1017.78516]Chaljub, E.; Komatitsch, D.; Vilotte, J. P., The spectral element method: An efficient tool to simulate the seismic response of 2-D and 3-D geological structures, 609-611 [Zbl 0974.74583]Joly, P.; Bermúdez, A.; Pedreira, D. G., Mathematical analysis and numerical validation of a method to compute guided modes in open stratified waveguides, 612-614 [Zbl 1028.78512]Kim, Seongjai; Symes, William W., Multigrid domain decomposition methods for the Helmholtz problem, 617-619 [Zbl 0940.65144]Widlund, Olof B., Schwarz methods for Helmholtz’s equation, 620-622 [Zbl 0940.65145]McInnes, L. C.; Susan-Resiga, R.; Atassi, H. M.; Keyes, D. E., Parallel solution of Helmholtz problems using additive Schwarz methods, 623-625 [Zbl 0940.65121]Lu, Ya Yan, Large range step method for Helmholtz waveguides, 626-628 [Zbl 1028.78521]Thompson, Lonny L.; Huan, Runnong, Accuracy of nonreflecting bounary conditions for the time-dependent wave equation, 629-631 [Zbl 0940.65102]Bonomi, Ernesto; Pieroni, Enrico, Energy-tuned absorbing boundary conditions, 632-634 [Zbl 0945.76075]Jackiewicz, Zdzislaw; Mead, Jodi L.; Renaut, Rosemary A., Absorbing boundary conditions for the acoustic wave equation, 635-637 [Zbl 0973.76604]Matignon, Denis; Audounet, Jacques; Montseny, Gérard, Energy decay for wave equations with damping of fractional order, 638-640 [Zbl 0973.74039]Villamizar, V.; Jimenez, R., Scattering cross section of a cylinder at the interface of two acoustic media, 641-644 [Zbl 0973.76589]Cagnol, John; Zolésio, Jean-Paul, Shape analysis in the wave equation with Dirichlet and Neumann boundary condition and applications, 645-647 [Zbl 0940.35121]Pani, Amiya K., An \(H^1\)-Galerkin mixed finite element method for second order wave equations, 648-651 [Zbl 0940.65103]Zhang, Chaoming; Symes, William W., Fourth-order methods for acoustic waves with discontinuous materials, 652-654 [Zbl 0982.76533]Infeld, E.; Senatorski, A., Numerical studies of soliton waves, 657-659 [Zbl 0939.76575]Choi, J. W., Nonlinear waves in a two-layer compressible fluid over a bump, 660-662 [Zbl 0982.76545]Ostrovsky, Lev A., Theoretical models for strongly nonlinear internal waves on the oceanic shelf, 663-665 [Zbl 0982.76513]Jordan, Richard; Turkington, Bruce; Zirbel, Craig, A mean-field statistical theory of soliton turbulence, 666-669 [Zbl 0982.76522]Joly, Patrick; Komech, Alexander; Vacus, Olivier, On transitions to stationary states in a Maxwell-Landau-Lifschitz-Gilbert system, 670-672 [Zbl 0957.78003]Mills, Michael J.; Kath, William L., Frequency shifts in a nonlinear optical loop mirror switch induced by control pulse spreading, 673-675 [Zbl 0957.78021]Richoux, O.; Depollier, C.; Hardy, J.; Bresini, A., Propagation of mechanical waves in one-dimensional disordered and/or nonlinear media, 676-678 [Zbl 0974.74534]Gottlieb, Johannes; Loukachev, Iouri, Nonlinear wave propagation in soil: Modeling of a special phenomenon and identification of parameters, 679-681 [Zbl 0974.74535]Edelman, Inna, Nonlinear waves propagating in a saturated porous medium, 682-684 [Zbl 0974.74533]Jena, J.; Sharma, V. D., On the evolution of a characteristic shock and its interaction with a discontinuity wave in a relaxing gas, 685-687 [Zbl 0982.76525]Drozdova, Julia A., Nonlinear interaction of waves in a channel with a step-wise bottom, 688-690 [Zbl 0973.76546]Delaurens, Frédérique; Hanouzet, Bernard; Huynh, Philippe; Sesquès, Muriel, Propagation of an optical pulse in a nonlinear Kerr medium, 691-693 [Zbl 0957.78019]Biswas, Anjan, Analysis of the perturbed nonlinear Schrödinger’s equation, 694-697 [Zbl 0957.78504]Marks, Brian; Kath, William L., Effect of filters on soliton interactions in wavelength-division-multiplexed systems, 698-700 [Zbl 0957.78020]Bulatov, V. V.; Vladimirov, Y. V.; Dobrokhotov, S. Y.; Danilov, V. G., Point weak singularity for two-dimensional nonlinear equations of hydrodynamics: Expansion of shock waves and calculation of typhoon trajectories, 701-703 [Zbl 0982.76524]Makar, Malak N.; Abd-el-Malek, Mina B., Progressive internal gravity waves with free upper surface over a triangular obstacle, 704-706 [Zbl 0982.76514]Gvozdovskaya, Natalia I.; Kulikovskij, Andrey G., Electromagnetic shock waves and their structure in anisotropic ferromagnets with easy axis, 707-709 [Zbl 0957.78007]Seguel, Jaime, Some further studies on fast trigonometric transforms, 712-714 [Zbl 0948.65150]Inamdar, Satish R.; Karimi, I. A., Plane wave solutions and its stability analysis for delay-differential equations, 715-717 [Zbl 0938.34550]Medvedev, Georgiy S.; Prikazchikov, Viktor G., Two-sided eigenvalue approximations for some spectral problems, 718-720 [Zbl 0941.35056]Sinha, Rajen K.; Pani, Amiya K., A qualocation method for hyperbolic integro-differential equations, 723-726 [Zbl 0942.65150]Bulatov, V. V.; Vladimirov, Y. V., Numerical simulations of internal gravity waves from an object moving in a stratified fluid on the basis of Green’s function method, 729-731 [Zbl 0973.76595]Delic, George, A Galerkin approximation for Sturmian spectral function methods in scattering theory, 732-735 [Zbl 1051.34504]Cutzach, P. M.; Lunéville, E., On the scattering of acoustic waves with some unbounded obstacles, 736-738 [Zbl 0982.76556]Dallas, Allan G.; Hsiao, G. C.; Kleinman, R. E., Aspects of numerical stability in Galerkin procedures, 741-743 [Zbl 0940.65061]Gheri, Giorgio; Mosig, Juan R., Wavelets/Green’s functions solution of planar antennas and arrays: Numerical aspects and real impact on antenna design, 744-746 [Zbl 0943.78010]Joly, P.; Rhaouti, L., Numerical simulation of a kettle drum using a fictitious domain method, 747-749 [Zbl 0974.74521]Chapman, S. J.; Lawry, J. M. H.; Ockendon, J. R.; Tew, R. H., Complex rays and diffraction, 752-754 [Zbl 1051.78504]Coffey, Mark W., Modelling the electrodynamic response of composite superconducting structures in the mixed state, 757-759 [Zbl 0974.74523]Brocato, M.; Tamagny, P., Discontinuity waves in a continuum with lattice microstructure, 760-762 [Zbl 0974.74506]Levadoux, David P.; Michielsen, Bas L., Analysis of a boundary integral equation for high frequency Helmholtz problems, 765-767 [Zbl 0940.65138]Clouteau, Didier; Baroni, Axelle; Aubry, Denis, Boundary integrals and ray method coupling for seismic borehole modeling, 768-770 [Zbl 0970.74035]Nachbin, A.; Casulli, V., Water waves: Linear potential theory results validated with a hydrostatic Navier-Stokes model, 773-775 [Zbl 0973.76554]Szaraniec, Edward, Scaling law of fragmentation in distant sounding methods, 778-780 [Zbl 0974.74540]Luke, Jonathan H. C., A finite difference method for dispersive linear waves: Inhomogeneities and interfaces, 781-783 [Zbl 0940.65090]Bulatov, V. V.; Vladimirov, Y. V., Propagation internal gravity waves in unsteady inhomogeneous stratified medium, 784-786 [Zbl 0973.76548]Bulatov, V. V.; Borovikov, V. A.; Morozov, E. G., Localization of tidal internal waves in the tropical Atlantic: Nonspectral and spectral approaches, 787-789 [Zbl 0939.76572] Cited in 1 Review MSC: 00B25 Proceedings of conferences of miscellaneous specific interest 76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics 65-06 Proceedings, conferences, collections, etc. pertaining to numerical analysis Keywords:Golden, CO (USA); Conference; Wave propagation; Mathematical aspects; Numerical aspects; Proceedings Biographic References: Kleinman, Ralph Citations:Zbl 0846.00038 PDF BibTeX XML Cite \textit{J. A. DeSanto} (ed.), Mathematical and numerical aspects of wave propagation. Proceedings of the 4th international conference held at Mines in Golden, CO, USA, June 1--5, 1998. Philadelphia, PA: SIAM (1998; Zbl 0904.00054)