×

A posteriori error estimation for nonlinear variational problems by duality theory. (English) Zbl 0904.65064

J. Math. Sci., New York 99, No. 1, 927-935 (2000); translation from Zap. Nauchn. Semin. POMI 243, 201-214 (1997).
Summary: We use duality theory of the calculus of variations for deriving a posteriori error estimates. We obtain a general form of this (duality) error estimate and show that known classes of a posteriori error estimates are its particular cases.

MSC:

65K10 Numerical optimization and variational techniques
49J27 Existence theories for problems in abstract spaces
49N15 Duality theory (optimization)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Ainsworth and J. T. Oden, ”A unified approach to an a posteriori error estimation using element residual methods,”Numer. Math.,65, 23–50 (1993). · Zbl 0797.65080
[2] J. P. Aubin and H. G. Burchard, ”Some aspects of the method of hypercycle applied to elliptic variational problems,” in:Numerical Solutions of Partial Differential Equations-II, SYNSPADE 1970, Academic Press, New York-London (1971).
[3] I. Babuška and W. C. Rheinboldt, ”Error estimates for adaptive finite element computations,”SIAM J. Numer. Anal.,18, 736–754 (1978). · Zbl 0398.65069
[4] I. Babuška and R. Rodriguez, ”The problem, of the selection of an a posteriori error indicator based on smoothening techniques,”Int. J. Numer. Meth. Eng.,36, 539–567 (1993). · Zbl 0770.65065
[5] R. E. Bank and W. Weiser, ”Some a posteriori error estimators for elliptic partial differential equations,”Math. Comp.,44, 283–301 (1985). · Zbl 0569.65079
[6] I. Ekeland and R. Teman,Convex Analysis and Variational Problems, North-Holland, Amsterdam (1976).
[7] W. Fenchel, ”On the conjugate convex functions,”Can. J. Math.,1, 73–77 (1949). · Zbl 0038.20902
[8] B. Fraeijs de Veubeke, ”Displacement and equilibrium models in the finite element method,” in:Stress Analysis, Wiley, New York (1965), pp. 145–197.
[9] R. Glowinski,Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York (1984). · Zbl 0536.65054
[10] C. Johnson and P. Hansbo, ”Adaptive finite elements in computational mechanics,”Comput. Methods Appl. Mech. Eng.,101, 143–181 (1992). · Zbl 0778.73071
[11] C. Johnson and A. Szepessy, ”Adaptive finite element methods for conservation laws based on a posteriori error estimates,”Commun. Pure Appl. Math.,XLVIII, 199–234 (1995). · Zbl 0826.65088
[12] D. W. Kelly, ”The self-equilibration residuals and complementary a posteriori estimates in the finite element method,”Int. J. Numer. Methods Eng.,20, 1491–1506 (1984). · Zbl 0575.65100
[13] P. Ladeveze and D. Leguillon, ”Error estimate procedure in the finite element method and applications,”SIAM J. Numer. Anal.,20, 485–509 (1983). · Zbl 0582.65078
[14] O. A. Ladyzhenskaya,Boundary-Value Problems of Mathematical Physics, [in Russian], Nauka, Moscow (1971). · Zbl 0169.00206
[15] S. G. Mikhlin,Variational Methods in Mathematical Physics, Pergamon, Oxford (1964). · Zbl 0119.19002
[16] P. P. Mosolov and V. P. Myasnikov,Mechanics of Rigid Plastic Media [in Russian], Nauka, Moscow (1981). · Zbl 0551.73002
[17] S. I. Repin, ”Errors of the finite element method for perfectly elasto-plastic problems,”Math. Models Methods. Appl. Sci.,65, 587–604 (1996). · Zbl 0856.73071
[18] S. I. Repin and G. A. Seregin, ”Error estimates for stresses in the finite element analysis of the two-dimensional elasto-plastic problems,”Int. J. Eng. Sci.,33, 255–268 (1991). · Zbl 0899.73532
[19] S. I. Repin and L. S. Xanthis, ”A posteriori error estimation for elasto-plastic problems based on duality theory,”Comput. Meth. Appl. Mech. Engrg. (to appear). · Zbl 0886.73082
[20] R. Verfürth,A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley, Teubner, New York (1996). · Zbl 0853.65108
[21] O. C. Zienkiewicz and J. Z. Zhu, ”A simple error estimator and adaptive procedure for practical engineering analysis,”Int. J. Numer. Meth. Eng.,24, 337–357 (1987). · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.