Paternoster, B.; Cafaro, M. Compuation of the interval of stability of Runge-Kutta-Nyström methods. (English) Zbl 0908.65071 J. Symb. Comput. 25, No. 3, 383-394 (1998). The interval of stability of a Runge-Kutta-Nyström method is the largest interval \((-\beta ,0)\) such that for all \(\lambda h^2\in (-\beta ,0)\) the method, applied with step size \(h\) to \(y''-\lambda y =0\), gives a bounded solution. This article presents a ‘Mathematica’ package which, for a given Runge-Kutta-Nyström method, computes the interval of stability. Reviewer: E.Hairer (Genève) Cited in 1 ReviewCited in 5 Documents MSC: 65L20 Stability and convergence of numerical methods for ordinary differential equations 65L05 Numerical methods for initial value problems involving ordinary differential equations 65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations 34A34 Nonlinear ordinary differential equations and systems 68W30 Symbolic computation and algebraic computation Keywords:Runge-Kutta-Nyström methods; stability interval; symbolic computation; Mathematica package Software:Mathematica PDF BibTeX XML Cite \textit{B. Paternoster} and \textit{M. Cafaro}, J. Symb. Comput. 25, No. 3, 383--394 (1998; Zbl 0908.65071) Full Text: DOI