Mandal, B.; Pal, A. K. Order level inventory system with ramp type demand rate for deteriorting items. (English) Zbl 0911.90142 J. Interdiscip. Math. 1, No. 1, 49-66 (1998). Summary: An order level inventory system for deteriorating items has been developed with demand rate a ramp type function of time. Deterministic and probabilistic demand situations are discussed. The results obtained have been compared with the corresponding results in the absence of deterioration and finally a numerical example for the deterministic demand situation has been studied along with its sensitivity. Cited in 1 ReviewCited in 27 Documents MSC: 90B05 Inventory, storage, reservoirs Keywords:order level inventory system; deteriorating items; sensitivity PDF BibTeX XML Cite \textit{B. Mandal} and \textit{A. K. Pal}, J. Interdiscip. Math. 1, No. 1, 49--66 (1998; Zbl 0911.90142) Full Text: DOI OpenURL References: [1] Ghare P. M., J. Ind. Engg 14 pp 238– (1963) [2] Covert R. P., AIIE Trans 5 pp 323– (1973) [3] Shah Y. K., Opsearch 14 (3) pp 174– (1977) [4] Misra R. B., Inter. J. Prod. Res 13 pp 495– (1975) [5] Donaldson W. A., Operational Research Quarterly 28 pp 663– (1977) · Zbl 0372.90052 [6] Silver E. A., J. Opl. Res. Soc 30 pp 71– (1979) [7] Ritchie E., J. Opl. Res. Soc 35 pp 949– (1984) [8] Goel, V. P. and Aggarwal, S. P. 1981. Proceedings All India Seminar on Operational Research and Decision making. University of Delhi. March1981, Delhi-110 007. Order level inventory system with power demand pattern for deteriorating items, [9] Datta T. K., Indian J. Pure. Appl. Math 19 (11) pp 1043– (1988) [10] Datta T. K., J. Opl. Res. Soc 43 (10) pp 9– (1992) · Zbl 0759.90020 [11] Chtmg Kun-Jen, J. Opl. Res. Soc 44 (12) pp 1235– (1993) · Zbl 0797.90016 [12] Pal A. K., The Korean Journal of Computational & Applied Mathematics 4 (2) (1997) [13] Ostenyotmg J. S., Production and Inventory Management pp 39–, 3. ed. (1986) [14] Hill R. M., J. Opl. Res. Soc 46 pp 1250– (1995) · Zbl 0843.90039 [15] Naddor E., Inventory Systems (1966) · Zbl 0315.90019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.