Existence theorems for some quadratic integral equations. (English) Zbl 0913.45001

The considered quadratic integral equations arise in the theories of radiative transfer and neutron transport and in the kinetic theory of gases. The theory of measures of noncompactness is used to prove few existence theorems for some quadratic integral equations. The theory is illustrated by two examples.
Reviewer: L.Hącia (Poznań)


45G05 Singular nonlinear integral equations
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
85A25 Radiative transfer in astronomy and astrophysics
82C70 Transport processes in time-dependent statistical mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
Full Text: DOI


[1] Akhmerow, R. R.; Kamenskii, M. I.; Potapov, A. S.; Rodkina, A. E.; Sadovskii, B. N., Measures of Noncompactness and Condensing Operators (1986), Nauka: Nauka Novosibirsk · Zbl 0623.47070
[2] Argyros, I. K., Quadratic equations and applications to Chandrasekhar’s and related equations, Bull. Austral. Math. Soc., 32, 275-292 (1985) · Zbl 0607.47063
[3] Argyros, I. K., On a class of quadratic integral equations with perturbations, Funct. Approx., 20, 51-63 (1992) · Zbl 0780.45005
[4] Banaś, J.; Goebel, K., Measures of noncompactness in Banach spaces. Measures of noncompactness in Banach spaces, Lecture Notesin Pure and Appl. Math., 60 (1980) · Zbl 0441.47056
[5] Busbridge, L. W., The Mathematics of Radiative Transfer (1960), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0090.21405
[6] Cahlon, B.; Eskin, M., Existence theorems for an integral equation of the Chandrasekhar \(H\), J. Math. Anal. Appl., 83, 159-171 (1981) · Zbl 0471.45002
[7] Case, K. M.; Zweifel, P. F., Linear Transport Theory (1967), Addison-Wesley: Addison-Wesley Reading · Zbl 0132.44902
[8] Chandrasekhar, S., Radiative Transfer (1950), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0037.43201
[9] Crum, M., On an integral equation of Chandrasekhar, Quart. J. Math. Oxford Ser. (2), 18, 244-252 (1947) · Zbl 0029.26901
[10] Darbo, G., Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24, 84-92 (1955) · Zbl 0064.35704
[11] Kelly, C. T., Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Eq., 4, 221-237 (1982) · Zbl 0495.45010
[12] Leggett, R. W., A new approach to the \(H\), SIAM J. Math., 7, 542-550 (1976) · Zbl 0331.45012
[13] Stuart, C. A., Existence theorems for a class of nonlinear integral equations, Math. Z., 137, 49-66 (1974) · Zbl 0289.45013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.