×

Theory and applications of Hopf bifurcations in symmetric functional differential equations. (English) Zbl 0917.58027

This paper is devoted to the general theory of Hopf bifurcations in symmetric functional differential equations. This general theory provides some important bifurcation invariants, the so-called crossing numbers, to detect the existence of periodic solutions and to describe their orbits and global continuation. In the paper under review, it is proved that these crossing numbers can be computed from the linearization around equilibria and from the isotypical decomposition of representation spaces. Note that as an application the authors consider the delay-induced oscillations in a Turing ring which provides a model for many biological and chemical systems.

MSC:

37G99 Local and nonlocal bifurcation theory for dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alexander, J. C., Patterns at priminary Hopf bifurcations of a plexus of identical oscillators, SIAM J. Appl. Math., 46, 199-221 (1986) · Zbl 0622.34034
[2] Alexander, J. C., Bifurcation of zeros of parametrized functions, J. Funct. Anal., 29, 37-53 (1978) · Zbl 0385.47038
[3] Alexander, J. C.; Auchmuty, G., Global bifurcations of phase-locked oscillators, Arch. Rational Mech. Anal., 93, 253-270 (1986) · Zbl 0596.92010
[4] Alexander, J. C.; Fitzpatrick, P. M., The homotopy of a certain spaces of nonlinear operators, and its relation to global bifurcation of the fixed points of parametrized condensing operators, J. Funct. Anal., 34, 87-106 (1979) · Zbl 0438.47061
[5] Alexander, J. C.; Yorke, J. A., Global bifurcation of periodic orbits, Amer. J. Math., 100, 263-292 (1978) · Zbl 0386.34040
[6] U. an der Heiden, Delays in physiological systems, J. Math. Biol. 8 (1978) 345-364.; U. an der Heiden, Delays in physiological systems, J. Math. Biol. 8 (1978) 345-364. · Zbl 0429.92009
[7] Chow, S. N.; Mallet-Paret, J., The Fuller index and global Hopf bifurcations, J. Differential Equations, 29, 263-292 (1978)
[8] S.N. Chow, J. Mallet-Paret, J.A. Yorke, A periodic orbit index which is a bifurcation invariant, in: J. Palis (Ed.), Lecture Notes in Math., vol., 1007, Springer, New York, 1983, pp. 109-131.; S.N. Chow, J. Mallet-Paret, J.A. Yorke, A periodic orbit index which is a bifurcation invariant, in: J. Palis (Ed.), Lecture Notes in Math., vol., 1007, Springer, New York, 1983, pp. 109-131. · Zbl 0549.34045
[9] Chow, S. N.; Mallet-Paret, J.; Yorke, J. A., Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Anal. TMA, 2, 753-763 (1978) · Zbl 0407.47039
[10] Crandall, M.; Rabinowitz, P., Bifurcation from simple eigenvalues, J. Func. Anal., 8, 321-340 (1971) · Zbl 0219.46015
[11] J.M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomath., vol. 20, Springer, New York, 1977.; J.M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomath., vol. 20, Springer, New York, 1977. · Zbl 0363.92014
[12] L.H. Erbe, K. Gȩba, W. Krawcewicz, J. Wu, \(S^1\); L.H. Erbe, K. Gȩba, W. Krawcewicz, J. Wu, \(S^1\) · Zbl 0765.34023
[13] B. Fiedler, Global Bifurcation of Periodic Solutions with Symmetry, Lecture Notes in Math., vol. 1309, Springer, New York, 1988.; B. Fiedler, Global Bifurcation of Periodic Solutions with Symmetry, Lecture Notes in Math., vol. 1309, Springer, New York, 1988. · Zbl 0644.34038
[14] Fuller, F. B., An index of fixed point type for periodic orbits, Amer. J. Math., 89, 133-148 (1967) · Zbl 0152.40204
[15] K. Gȩba, W. Krawcewicz, J. Wu, An equivariant degree with applications to symmetric bifurcation problems, I construction of the degree, Proc. London Math. Soc. 69 (1994) 377-398.; K. Gȩba, W. Krawcewicz, J. Wu, An equivariant degree with applications to symmetric bifurcation problems, I construction of the degree, Proc. London Math. Soc. 69 (1994) 377-398. · Zbl 0823.47060
[16] M. Golubitsky, D.G. Schaeffer, I.N. Stewart, Singularities and Groups in Bifurcation Theory, vol. II, Springer, New York, 1988.; M. Golubitsky, D.G. Schaeffer, I.N. Stewart, Singularities and Groups in Bifurcation Theory, vol. II, Springer, New York, 1988. · Zbl 0691.58003
[17] Golubitsky, M.; Stewart, I. N., Hopf bifurcation in the presence of symmetry, Arch. Rational Mech. Anal., 87, 107-165 (1985) · Zbl 0588.34030
[18] M. Golubitsky, I.N. Stewart, Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators, in: M. Golubitsky, J. Guckenheimer (Eds.), Multiparameter bifurcation theory, Contemporary Math. 56 (1986) 131-137.; M. Golubitsky, I.N. Stewart, Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators, in: M. Golubitsky, J. Guckenheimer (Eds.), Multiparameter bifurcation theory, Contemporary Math. 56 (1986) 131-137. · Zbl 0602.58038
[19] Hale, J. K., Theory of Functional Differential Equations (1977), Springer: Springer New York · Zbl 0425.34048
[20] L.N. Howard, Nonlinear oscillations, in: F.R. Hoppensteadt (Ed.), Oscillations in Biology, AMS Lecture Notes in Math. 17 (1979) 1-69.; L.N. Howard, Nonlinear oscillations, in: F.R. Hoppensteadt (Ed.), Oscillations in Biology, AMS Lecture Notes in Math. 17 (1979) 1-69.
[21] J. Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc., vol. 184, American Mathematical Society, Providence, 1976.; J. Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc., vol. 184, American Mathematical Society, Providence, 1976. · Zbl 0338.47032
[22] Ize, J.; Massabó, I.; Vignoli, V., Degree theory for equivariant maps, I. Trans. Amer. Math. Soc., 315, 433-510 (1980) · Zbl 0695.58006
[23] J. Ize, I. Massabó, V. Vignoli, Degree theory for equivariant maps, II. The general \(S^1\); J. Ize, I. Massabó, V. Vignoli, Degree theory for equivariant maps, II. The general \(S^1\)
[24] N. Koppel, Forced and coupled oscillators in biological applications, Proc. Int. Congr. Math., Warsaw, 1983.; N. Koppel, Forced and coupled oscillators in biological applications, Proc. Int. Congr. Math., Warsaw, 1983.
[25] Krasnosel’skii, M. A., Topological Methods in the Theory of Non-linear Integral Equations (1965), Pergamon Press: Pergamon Press New York
[26] Krawcewicz, W.; Vivi, P.; Wu, J., Computation formulae of an equivalent degree with applications to symmetric bifurcations, Nonlinear Studies, 4, 89-120 (1997) · Zbl 0915.58022
[27] Lasota, H.; York, J. A., Bounds for periodic solutions of differential equations in Banach spaces, J. Differential Equations, 10, 83-91 (1971) · Zbl 0261.34035
[28] N. MacDonald, Time Lags in Biological Models, Lecture Notes in Biomath., vol. 28, Springer, New York, 1979.; N. MacDonald, Time Lags in Biological Models, Lecture Notes in Biomath., vol. 28, Springer, New York, 1979. · Zbl 0403.92020
[29] Mallet-Paret, J.; York, J. A., Oriented families of periodic orbits, their sources, sinks and continuation, J. Differential Equations, 43, 419-450 (1982) · Zbl 0487.34038
[30] Othmer, H. G.; Scriven, L. E., Instability and dynamics pattern in cellular networks, J. Theoret. Biol., 32, 507-537 (1971)
[31] Rabinowitz, P. H., Some global results for non-linear eigenvalue problems, J. Funct. Anal., 7, 487-573 (1971) · Zbl 0212.16504
[32] Sattinger, D. H., Bifurcation and symmetry breaking in applied mathematics, Bull. Amer. Math. Soc., 3, 779-819 (1980) · Zbl 0448.35011
[33] S. Smale, A mathematical model of two cells via Turing’s equation, in: J.D. Cowan (Ed.), Some Mathematical Questions in Biology V, AMS Lecture Notes on Mathematics in the Life Sciences, vol. 6, American Mathematical Society, Providence, RI, 1974, pp. 15-26.; S. Smale, A mathematical model of two cells via Turing’s equation, in: J.D. Cowan (Ed.), Some Mathematical Questions in Biology V, AMS Lecture Notes on Mathematics in the Life Sciences, vol. 6, American Mathematical Society, Providence, RI, 1974, pp. 15-26. · Zbl 0333.92002
[34] Turing, A., The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B, 237, 37-72 (1952) · Zbl 1403.92034
[35] A. Vanderbauwhede, Local Bifurcation and Symmetry, Research Notes in Mathematics, vol. 75, Pitman, Boston, 1982.; A. Vanderbauwhede, Local Bifurcation and Symmetry, Research Notes in Mathematics, vol. 75, Pitman, Boston, 1982. · Zbl 0539.58022
[36] S.A. van Gils, T. Valkering, Hopf bifurcation and symmetry: standing and travelling waves in a circular-chain, Japan J. Appl. Math. 3 (1986) 207-222.; S.A. van Gils, T. Valkering, Hopf bifurcation and symmetry: standing and travelling waves in a circular-chain, Japan J. Appl. Math. 3 (1986) 207-222. · Zbl 0642.58038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.