Arendt, Wolfgang; Bénilan, Philippe Wiener regularity and heat semigroups on spaces of continuous functions. (English) Zbl 0920.35041 Escher, Joachim (ed.) et al., Topics in nonlinear analysis. The Herbert Amann anniversary volume. Basel: Birkhäuser. Prog. Nonlinear Differ. Equ. Appl. 35, 29-49 (1999). The authors examine the Dirichlet Laplacian \(\Delta_0\) on the Banach space \((C_0(\Omega), \|\cdot\|_\infty)\) where \(\Omega\) is an open subset of \(\mathbb{R}^N\) and \[ C_0(\Omega)= \Biggl\{f: \Omega\to \mathbb{C}\text{ continuous}:\;\lim_{x\to z} f(x)= 0\;\forall z\in\partial\Omega,\quad \lim_{\substack{| x|\to \infty\\ x\in\Omega}} f(x)= 0\Biggr\}. \] The Laplace operator \(\Delta_0\) is defined on \(C_0(\Omega)\) with maximal distributional domain; i.e. \[ D(\Delta_0)= \{f\in C_0(\Omega): \Delta f\in C_0(\Omega)\},\quad \Delta_0f= \Delta f, \] where \(\Delta f\) denotes the distributional Laplacian of \(f\). It is shown that \(\Delta_0\) generates a holomorphic \(C_0\)-semigroup on \(C_0(\Omega)\) if and only if \(\Omega\) is regular in the sense of Wiener. A corresponding result is also given for more general elliptic operators for the case where \(\Omega\) is bounded.For the entire collection see [Zbl 0903.00112]. Reviewer: W.Lamb (Glasgow) Cited in 20 Documents MSC: 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 47D06 One-parameter semigroups and linear evolution equations 35B65 Smoothness and regularity of solutions to PDEs Keywords:holomorphic semigroup PDF BibTeX XML Cite \textit{W. Arendt} and \textit{P. Bénilan}, Prog. Nonlinear Differ. Equ. Appl. 35, 29--49 (1999; Zbl 0920.35041) OpenURL