×

A unified approach for parameter identification of inelastic material models in the frame of the finite element method. (English) Zbl 0921.73143

Summary: This work is concerned with identification of parameters for inelastic material models. In order to account for possible nonuniformness of stress and strain distributions, the identification is performed in the frame of the finite element method. In particular, linearization procedures are described in a systematic manner for the case of complex material models within a geometric linear theory. This unified approach allows one to apply the Newton method for solving the associated direct problem and to apply gradient based methods for solving the associated inverse problem, which is considered as an optimization problem. Two numerical examples demonstrate the versatility of our approach: firstly, we consider Cooks membrane problem based on simulated data for re-identification of material parameters for a viscoplastic power law. Furthermore, material data for \(J_2\)-flow theory are determined, based on experimental data obtained by a grating method for a compact specimen, and we will investigate the results by using different starting values and stochastic perturbation of the experimental data.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Lemaitre, J.; Chaboche, J. L., Mechanics of Solid Materials (1990), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0743.73002
[2] (Miller, A. K., Unified Constitutive Equations for Creep and Plasticity (1987), Elsevier Applied Science: Elsevier Applied Science London, New York)
[3] Banks, H. T.; Kunisch, K., Estimation Techniques for Distributed Parameter Systems (1989), Birkhäuser: Birkhäuser Boston · Zbl 0695.93020
[4] Bui, H. D., Inverse Problems in the Mechanics of Materials, An Introduction (1994), CRC Press: CRC Press Boca Raton, London
[5] (Bui, H. D.; Tanaka, M., Inverse Problems in Engineering Mechanics (1994), Balkema: Balkema Rotterdam)
[6] Kublik, F.; Steck, E. A., Comparison of two constitutive models with one-and multiaxial experiments, (Besdo, D.; Stein, E., IUTAM Symposium. IUTAM Symposium, Hannover 1991. IUTAM Symposium. IUTAM Symposium, Hannover 1991, Finite Inelastic Deformations—Theory and Applications (1992), Springer-Verlag: Springer-Verlag Berlin)
[7] Mahnken, R.; Stein, E., Gradient-based methods for parameter identification of viscoplastic materials, (Bui, H. D.; Tanaka, M., Inverse Problems in Engineering Mechanics (1994), Balkema: Balkema Rotterdam)
[8] Mahnken, R.; Stein, E., Parameter identification of viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations, Int. J. Plast. (1996), in press · Zbl 0883.73028
[9] Müller, D.; Hartmann, G., Identification of material parameters for inelastic constitutive models using principles of biologic evolution, J. Engrg. Mat. Tech. (ASME), 111, 299-305 (1989)
[10] Cailletaud, G.; Pilvin, P., Identification and inverse problems: A modular approach, (Bertram, L. A.; Brown, S. B.; Frees, A. D., Reprinted from: MD-Vol. 43, Material Parameter Estimation for Modern Constitutive Equations. Reprinted from: MD-Vol. 43, Material Parameter Estimation for Modern Constitutive Equations, Book No. H00848 (1993), The American Society of Mechanical Engineers)
[11] Gavrus, A.; Massoni, E.; Chenot, J. L., Computer aided Rheology for non-linear large strain thermo-viscoplastic behaviour formulated as an inverse problem, (Bui, H. D.; Tanaka, M., Inverse Problems in Engineering Mechanics (1994), Balkema: Balkema Rotterdam)
[12] Mahnken, R.; Stein, E., The parameter-identification for visco-plastic models via finite-element-methods and gradient-methods, Modell. Simul. Mater. Sci. Engrg., 2, 597-616 (1994)
[13] Yoshimura, S.; Hishida, H.; Yagawa, G., Parameter optimization of viscoplastic constitutive equation using hierarchical neural network, (Proc. VII Int. Cong. Experimental Mechanics, Vol. 1 (1992)), 296
[14] Barthold, F. J.B., Theorie und Numerik zur Berechnung und Optimierung von Strukturen aus isotropen, hyperelastischen Materialien, Dissertation, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, F 93/2 (1993)
[15] Schwefel, K. P., Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie (1977), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0347.65035
[16] Bertsekas, D. P., Projected Newton methods for optimization problems with simple constraints, SIAM J. Con. Opt., 20, 2, 221-246 (1982) · Zbl 0507.49018
[17] Mahnken, R., Duale Verfahren für nichtlineare Optimierungsprobleme in der Strukturmechanik, Dissertation, Forschungs-und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, F 92/3 (1992)
[18] Chaboche, J.-L., Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals, Bull. Acad. Pol. Sci., Ser. Sci. Tech., 25, 33 (1977)
[19] Simo, J. C.; Hughes, C., Elastoplasticity and Viscoplasticity. Computational Aspects (1988), Stanford University, preprint, Springer-Verlag
[20] Perzyna, P., Thermodynamic theory of viscoplasticity, (Advances in Applied Mechanics, Vol. 11 (1977), Academic Press: Academic Press New York) · Zbl 0291.73022
[21] Chaboche, J.-L.; Rousselier, G., On the plastic and viscoplastic constitutive equations—Part I: Rules developed with internal variable concept, Trans. ASME, J. Pres. Ves. Tech., 105, 153-158 (1983)
[22] Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations (1923), Yale University Press: Yale University Press New Haven · JFM 49.0725.04
[23] Bard, Y., Non-linear Parameter Estimation (1974), Academic Press: Academic Press New York
[24] Baumeister, J., Stable Solution of Inverse Problems (1987), Vieweg: Vieweg Braunschweig · Zbl 0623.35008
[25] Louis, A. K., Inverse und Schlecht Gestellte Probleme (1989), Teubner: Teubner Stuttgart · Zbl 0667.65045
[26] Morozov, V. A., Methods for Solving Incorrectly Posed Problems (1984), Springer-Verlag: Springer-Verlag New York
[27] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate independent elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 40, 101-118 (1985) · Zbl 0535.73025
[28] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Non-linear Equations (1983), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0579.65058
[29] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[30] Mahnken, R., A Newton-multigrid algorithm for elasto-plastic/viscoplastic problems, Comput. Mech., 15, 408-425 (1995) · Zbl 0819.73065
[31] Wilkins, M. L., Calculation of elastic-plastic flow, (Alder, B.; etal., Methods of Computational Phvsics, 3 (1964), Academic Press: Academic Press New York)
[32] Krieg, R. G.; Key, S. W., Implementation of a time dependent plasticity theory into structural computer programs, (Sricklin, J. A.; Saszlski, K. J., Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects. Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD-20 (1976), ASME: ASME New York)
[33] Doghri, I., Fully implicit integration and consistent tangent modulus in elasto-plasticity, Int. J. Numer. Methods Engrg., 36, 3915-3932 (1993) · Zbl 0794.73072
[34] Haslinger, J.; Neittaanmäki, P., Finite Element Approximation for Optimal Shape Design—Theory and Applications (1988), J. Wiley: J. Wiley Chichester, New York · Zbl 0713.73062
[35] Simo, J. C.; Taylor, R. L., A return mapping algorithm for plane stress elastoplasticity, Int. J. Numer. Methods Engrg., 22, 3, 649-670 (1986) · Zbl 0585.73059
[36] Gill, P. E.; Murray, W.; Wright, M. H., Practical Optimization (1981), Academic Press: Academic Press London · Zbl 0503.90062
[37] Luenberger, D. G., Linear and Non-linear Programming (1984), Addison-Wesley: Addison-Wesley Reading · Zbl 0184.44502
[38] Schittkowski, K., The non-linear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function, Numer. Math., 38, 1, 83-114 (1981) · Zbl 0534.65030
[39] Mahnken, R.; Stein, E.; Bischoff, D., A stabilization procedure by line-search computation for first order approximation strategies in structural optimization, Int. J. Numer. Methods Engrg., 35, 1015-1029 (1992) · Zbl 0768.73050
[40] Powell, M. J.D., A fast algorithm for non-linear constrained optimization calculations. Numerical Analysis, (Watson, G. A., Proc. of the Biennial Conference held at Dundee. Proc. of the Biennial Conference held at Dundee, June 1977. Proc. of the Biennial Conference held at Dundee. Proc. of the Biennial Conference held at Dundee, June 1977, Springer Lecture Notes in Mathematics 630 (1977), Springer: Springer Berlin) · Zbl 0374.65032
[41] Bergmann, D.; Galanulis, K.; Ritter, R., Optical Field Methods for 3D-Deformation Measurement in Fracture Mechanics, (Proceedings of the IUTAM-Symposium on Size-Scale Effects in the Failure Mechanics of Materials and Structure (1994), Politecnico Torino), accepted for publication
[42] Andresen, K.; Hübner, B., Calculation of strain from an object grating on a reseau film by a correlation method, Exp. Mech., 32, 96-101 (1992)
[43] Mahnken, R.; Stern, E., Parameter identification for finite deformation elasto-plasticity in principal directions, Comput. Methods Appl. Mech. Engrg. (1996), submitted
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.