×

Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source. (English) Zbl 0923.35077

The Dirichlet problem for semilinear parabolic equations with nonlocal reaction terms is considered. The nonlinearities are such that blow-up in finite time may occur. For a large class of equations it is shown that solutions have global blow-up and that the rate of blow-up is uniform in compact subsets of the domain. The behavior in a boundary layer is studied, too. Some Fujita-type results are also established for the Cauchy problem.

MSC:

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs

References:

[1] Bebernes, J.; Bressan, A.; Lacey, A., Total blow-up versus single-point blow-up, J. Diff. Equations, 73, 30-44 (1988) · Zbl 0674.35051
[2] Bricmont, J.; Kupiainen, A., Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 539-575 (1994) · Zbl 0857.35018
[3] Cannon, J. R.; Yin, H.-M., A class of non-linear non-classical parabolic equations, J. Diff. Equations, 79, 266-288 (1989) · Zbl 0702.35120
[4] Chadam, J. M.; Peirce, A.; Yin, H.-M., The blow-up property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl., 169, 313-328 (1992) · Zbl 0792.35095
[5] Deng, K., Nonlocal nonlinearity versus global blow-up, Math. Applicata, 124-129 (1995)
[6] Deng, K.; Kwang, M. K.; Levine, H. A., The influence of nonlocal nonlinearities on the long time behaviour of solutions of Burgers equation, Quarterly Appl. Math., 5, 1237-1245 (1992)
[7] Filippas, S.; Kohn, R. V., Refined asymptotics for the blowup of \(u_t Δu u^p \), Comm. Pure Appl. Math., 45, 821-869 (1992) · Zbl 0784.35010
[8] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Prentice-Hall: Prentice-Hall New York · Zbl 0144.34903
[9] Friedman, A.; Mcleod, J. B., Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34, 425-447 (1985) · Zbl 0576.35068
[10] Fujita, H., On the blowing-up of solutions of the Cauchy problem for \(u_t = Δu u^{1+α} \), J. Fac. Sci. Univ. Tokyo, Sect. I, 13, 109-124 (1966) · Zbl 0163.34002
[11] V. A. Galaktionov, H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal.; V. A. Galaktionov, H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal. · Zbl 1139.35317
[12] Giga, Y.; Kohn, R. V., Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38, 297-319 (1985) · Zbl 0585.35051
[13] Giga, Y.; Kohn, R. V., Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36, 1-40 (1987) · Zbl 0601.35052
[14] Giga, Y.; Kohn, R. V., Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42, 845-884 (1989) · Zbl 0703.35020
[15] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1977), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0691.35001
[16] Guo, J.-S.; Su, H.-W., The blow-up behaviour of the solution of an integrodifferential equation, Differential Integral Equations, 5, 1237-1245 (1992) · Zbl 0798.35021
[17] Herrero, M. A.; Velázquez, J. J.L., Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10, 131-189 (1993) · Zbl 0813.35007
[18] Herrero, M. A.; Velázquez, J. J.L., Flat blow up in one-dimensional semilinear heat equation, Differential Integral Equations, 5, 973-997 (1992) · Zbl 0767.35036
[19] Herrero, M. A.; Velázquez, J. J.L., Blow-up profiles in one-dimensional, semilinear parabolic problems, Comm. Partial Differential Equations, 17, 205-219 (1992) · Zbl 0772.35027
[20] Herrero, M. A.; Velázquez, J. J.L., Generic behaviour of one-dimensional blow up patterns, Annali Scuola Norm. Sup. Pisa, XIX, 381-450 (1992) · Zbl 0798.35081
[21] Martel, Y.; Souplet, P., Estimations optimales en temps petit et près de la frontière pour les solutions de l’équation de la chaleur avec données non compatibles, C.R. Acad. Sci. Paris, 327, 575-580 (1998) · Zbl 0990.35051
[22] Merle, F.; Zaag, H., Stability of blow-up profile for equation of the type \(u_t = Δu u^{p−1}u\), Duke Math. J., 86, 143-195 (1997) · Zbl 0872.35049
[23] Merle, F.; Zaag, H., Optimal estimates for blow-up rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51, 139-196 (1998) · Zbl 0926.35024
[24] F. Merle, H. Zaag, Refined uniform estimates at blow-up and applications for nonlinear heat equations, Geom. Funct. Anal.; F. Merle, H. Zaag, Refined uniform estimates at blow-up and applications for nonlinear heat equations, Geom. Funct. Anal. · Zbl 0926.35024
[25] Merle, F.; Zaag, H., Estimations uniformes à l’explosion pour les équations de la chaleur non linéaires et applications, Séminaire X-EDP, Ecole Polytechnique, 19, 1-8 (1996-97) · Zbl 1069.35505
[26] Pao, C. V., Nonexistence of global solutions for an integrodifferential system in reactor dynamics, SIAM J. Math. Anal., 11, 559-564 (1980) · Zbl 0449.45011
[27] Souplet, P., Blow up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29, 1301-1334 (1998) · Zbl 0909.35073
[28] Souplet, P., Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, Technical report (1997)
[29] Souplet, P., Some results on blow-up for nonlocal reaction-diffusion equations, Proceedings of the Third European Conference on Elliptic and Parabolic Problems, Pont-à-Mousson 1997. Proceedings of the Third European Conference on Elliptic and Parabolic Problems, Pont-à-Mousson 1997, Pitman Res. Notes Ser. Math., 384 (1998), Addison-Wesley: Addison-Wesley Longman · Zbl 0919.35058
[30] Souplet, P.; Tayachi, S.; Weissler, F. B., Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term, Indiana Univ. Math. J., 48, 655-682 (1996) · Zbl 0990.35061
[31] Velázquez, J. J.L., Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., 338, 441-464 (1993) · Zbl 0803.35015
[32] Velázquez, J. J.L., Blow up for semilinear parabolic equations, Research in applied mathematics, Recent Advances in Partial Differential Equations (1994), John Wiley, p. 131-145 · Zbl 0798.35072
[33] Wang, L.; Chen, Q., The asymptotic behaviour of blow-up solution of localized nonlinear equation, J. Math. Anal. Appl., 200, 315-321 (1996) · Zbl 0852.35101
[34] Wang, M.; Wang, Y., Properties of positive solutions for non-local reaction- diffusion problems, Math. Methods Appl. Sci., 19, 1141-1156 (1996) · Zbl 0990.35066
[35] Weissler, F. B., Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38, 29-40 (1981) · Zbl 0476.35043
[36] Weissler, F. B., An \(L^∞\), Comm. Pure Appl. Math., 38, 291-295 (1985) · Zbl 0592.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.