Merdivenci Atici, F.; Guseinov, G. Sh. Positive periodic solutions for nonlinear difference equations with periodic coefficients. (English) Zbl 0923.39010 J. Math. Anal. Appl. 232, No. 1, 166-182 (1999). The authors consider the following boundary value problem \[ -\Delta [p(n-1)\Delta y(n-1)]+q(n) y(n)=f(n,y(n)), \quad n=1,2,\dots,N, \]\[ y(0)=y(N),\qquad p(0)\Delta y(0)=p(N)\Delta y(N). \] Using a fixed point theorem in cones, existence of one as well as two solutions is established for the boundary value problem. The authors also consider the boundary value problem with a parameter. Finally, existence of positive periodic solutions on the whole discrete axis is established when the coefficients of the boundary value problem are periodic. Reviewer: Patricia J.Y.Wong (Singapore) Cited in 62 Documents MSC: 39A12 Discrete version of topics in analysis 39A10 Additive difference equations Keywords:nonlinear difference equations; periodic boundary conditions; positive periodic solution; fixed point theorem in cones; periodic coefficients PDF BibTeX XML Cite \textit{F. Merdivenci Atici} and \textit{G. Sh. Guseinov}, J. Math. Anal. Appl. 232, No. 1, 166--182 (1999; Zbl 0923.39010) Full Text: DOI OpenURL References: [1] Agarwal, R. P.; Wong, P. J.Y., Advanced Topics in Difference Equations (1997), Kluwer: Kluwer Dordrecht · Zbl 0914.39005 [2] Eloe, P. W.; Henderson, J., Positive solutions for higher order ordinary differential equations, Electronic J. Differential Equations, 3, 1-8 (1995) [3] Eloe, P. W.; Henderson, J.; Wong, P. J.Y., Positive solutions for two-point boundary value problems, Dynamic Syst. Appl., 2, 135-144 (1996) · Zbl 0876.34016 [4] Eloe, P. W.; Henderson, J., Positive solutions and nonlinear multipoint conjugate eigenvalue problems, Electronic J. Differential Equations, 3, 1-11 (1997) · Zbl 0888.34013 [5] Eloe, P. W.; Henderson, J., Positive solutions for \((n\), Nonlinear Anal., 28, 1669-1680 (1997) · Zbl 0871.34015 [6] Erbe, L. H.; Hu, S.; Wang, H., Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., 184, 640-648 (1994) · Zbl 0805.34021 [7] Erbe, L. H.; Wang, H., On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120, 743-748 (1994) · Zbl 0802.34018 [8] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Academic Press: Academic Press San Diego · Zbl 0661.47045 [9] Guseinov, G. Sh., Spectrum and eigenfunction expansions of a quadratic pencil of Sturm-Liouville operators with periodic coefficients, Spectral Theory Operators Appl., Elm, Baku (Azerbaijan), 6, 56-97 (1985) [10] Guseinov, G. Sh., On spectral analysis of a quadratic pencil of Sturm-Liouville Operators, Dokl. Akad. Nauk SSSR, 285, 1292-1296 (1985) [11] Henderson, J.; Kaufmann, E. R., Multiple positive solutions for focal boundary value problems, Comm. Appl. Anal., 1, 53-60 (1997) · Zbl 0887.34018 [12] Kelley, W. G.; Peterson, A. C., Difference Equations: An Introduction with Applications (1991), Academic Press: Academic Press New York · Zbl 0733.39001 [13] Krasnosel’skii, M. A., Positive Solutions of Operator Equations (1964), Noordhoff: Noordhoff Groningen · Zbl 0121.10604 [14] Krasnosel’skii, M. A., The Operator of Translation Along the Trajectories of Differential Equations. The Operator of Translation Along the Trajectories of Differential Equations, Transl. Math. Monographs, 19 (1968), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 1398.34003 [15] Liu, Z.; Li, F., Multiple positive solutions for nonlinear two-point boundary value problems, J. Math. Anal. Appl., 203, 610-625 (1996) · Zbl 0878.34016 [16] Merdivenci, F., Two positive solutions of a boundary value problem for difference equations, J. Difference Equations Appl., 1, 262-270 (1995) · Zbl 0854.39001 [17] Merdivenci, F., Green’s matrices and positive solutions of a discrete boundary value problem, Pan American Math. J., 5, 25-42 (1995) · Zbl 0839.39002 [18] Merdivenci, F., Positive solutions for focal point problems for \(2n\), Pan American Math. J., 5, 71-82 (1995) · Zbl 0839.39003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.