Bordemann, M.; Brischle, M.; Emmrich, C.; Waldmann, S. Subalgebras with converging star products in deformation quantization: An algebraic construction for \(\mathbb{C} P^n\). (English) Zbl 0923.58024 J. Math. Phys. 37, No. 12, 6311-6323 (1996). In an earlier article [Lett. Math. Phys. 36, No. 4, 357-371 (1996; Zbl 0849.58035)], the authors gave a closed formula for a star product of the Wick type complex projective space. Here they use this formula to construct a subalgebra \({\mathcal U}\) of the formal algebra consisting of converging power series of the formal parameter. When substituting this parameter by a real number \(\alpha\), the quotient of \({\mathcal U}\) by the kernel of the substitution homomorphism turns out to be infinite dimensional, except for the case \(\alpha= {1\over n}\), \(n\) some positive integer, where it turns out to be finite dimensional and can be identified with an associative algebra of quantum observables of the isotropic harmonic oscillator with \(n + 1\) degrees of freedom. This procedure is tested on other phase spaces like \(\mathbb{C}^{n+l}\), the \(2n\)-torus or the Poincaré disk. Reviewer: G.Loupias (Montpellier) Cited in 10 Documents MSC: 53D50 Geometric quantization 81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations 81Q99 General mathematical topics and methods in quantum theory 46L60 Applications of selfadjoint operator algebras to physics 46N50 Applications of functional analysis in quantum physics 81S10 Geometry and quantization, symplectic methods Keywords:converging star products; deformation quantization Citations:Zbl 0849.58035 PDF BibTeX XML Cite \textit{M. Bordemann} et al., J. Math. Phys. 37, No. 12, 6311--6323 (1996; Zbl 0923.58024) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1016/0003-4916(78)90224-5 · Zbl 0377.53024 [2] DOI: 10.1007/BF00402248 · Zbl 0526.58023 [3] Fedosov B., J. Diff. Geom. 40 pp 213– (1994) [4] DOI: 10.1016/0001-8708(91)90057-E · Zbl 0734.58011 [5] Rubio R., C.R.A.S. 299 pp 699– (1984) [6] DOI: 10.1007/BF00714403 · Zbl 0849.58035 [7] Omori H., Adv. Stud. Pure Math. 22 pp 133– (1993) [8] DOI: 10.1007/BF00574162 · Zbl 0618.53049 [9] DOI: 10.1016/0393-0440(94)90039-6 · Zbl 0834.22015 [10] Cahen M., Trans. Am. Math. Soc. 337 pp 73– (1993) [11] Berezin F., Izv. Mat. Nauk 38 pp 1109– (1974) [12] DOI: 10.1093/qmath/28.4.403 · Zbl 0387.58002 [13] DOI: 10.1016/0393-0440(90)90019-Y · Zbl 0719.53044 [14] DOI: 10.1007/BF00751065 · Zbl 0826.53052 [15] DOI: 10.1007/BF00739094 · Zbl 0831.58026 [16] DOI: 10.1007/BF02099490 · Zbl 0735.58020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.