×

A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. (English) Zbl 0925.76242

Summary: The dynamic subgrid-scale eddy viscosity model of M. Germano et al. [Phys. Fluids A 3, No. 7, 1760–1765 (1991; Zbl 0825.76334)] (DSM) is modified by employing the mixed model of Bardina et al. [Ph.D. dissertation, Stanford University (1983)] as the base model. The new dynamic mixed model explicitly calculates the modified Leonard term and only models the cross term and the SGS Reynolds stress. It retains the favorable features of DSM and, at the same time, does not require that the principal axes of the stress tensor be aligned with those of the strain rate tensor. The model coefficient is computed using local flow variables. The new model is incorporated in a finite-volume solution method and large-eddy simulations of flows in a lid-driven cavity at Reynolds numbers of 3200, 7500, and 10000 show excellent agreement with the experimental data. Better agreement is achieved by using the new model compared to the DSM. The magnitude of the dynamically computed model coefficient of the new model is significantly smaller than that from DSM.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M12 Finite volume methods applied to problems in fluid mechanics

Citations:

Zbl 0825.76334
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[2] DOI: 10.1063/1.857774 · doi:10.1063/1.857774
[3] DOI: 10.1017/S0022112082001116 · Zbl 0491.76058 · doi:10.1017/S0022112082001116
[4] DOI: 10.1063/1.866635 · doi:10.1063/1.866635
[5] DOI: 10.1007/BF01061452 · Zbl 0648.76040 · doi:10.1007/BF01061452
[6] DOI: 10.1007/BF01061499 · doi:10.1007/BF01061499
[7] DOI: 10.1063/1.858800 · Zbl 0813.76035 · doi:10.1063/1.858800
[8] DOI: 10.2514/8.3713 · doi:10.2514/8.3713
[9] DOI: 10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[10] DOI: 10.1017/S0022112092001733 · Zbl 0756.76034 · doi:10.1017/S0022112092001733
[11] DOI: 10.1063/1.858164 · Zbl 0753.76074 · doi:10.1063/1.858164
[12] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[13] DOI: 10.1063/1.857465 · doi:10.1063/1.857465
[14] DOI: 10.1017/S0022112085001987 · Zbl 0586.76099 · doi:10.1017/S0022112085001987
[15] Leonard A., Adv. Geophys. 18 pp 237– (1974) · doi:10.1016/S0065-2687(08)60464-1
[16] DOI: 10.1063/1.858261 · doi:10.1063/1.858261
[17] DOI: 10.1017/S0022112087001319 · Zbl 0634.76064 · doi:10.1017/S0022112087001319
[18] DOI: 10.1063/1.865568 · Zbl 0623.76060 · doi:10.1063/1.865568
[19] DOI: 10.1063/1.858280 · doi:10.1063/1.858280
[20] DOI: 10.1063/1.857779 · doi:10.1063/1.857779
[21] DOI: 10.1063/1.857491 · doi:10.1063/1.857491
[22] DOI: 10.1115/1.3242393 · doi:10.1115/1.3242393
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.