×

Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. (English) Zbl 0927.65097

The paper is concerned with initial value problems for ordinary differential equations (ODEs) whose solutions are a priori known to oscillate with a known frequency. Runge-Kutta methods are applied to first-order problems and Runge-Kutta-Nyström methods to second-order problems. P. Albrecht’s approach [SIAM J. Numer. Anal. 24, 391-406 (1987; Zbl 0617.65067); Teubner-Texte Math. 104, 8-18 (1988; Zbl 0682.65041)] is considered and the concept of trigonometric order of the method is used. The Runge-Kutta and Runge-Kutta-Nyström methods derived in this paper have low orders (1 or 2) and integrate trigonometric polynomials exactly. Two numerical examples are performed for comparison to others-Runge-Kutta-Nyström methods.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albrecht, P., The extension of the theory of A-methods to RK methods, (Strehmel, K., Numerical Treatment of Differential Equations, Proc. 4th Seminar NUMDIFF-4. Numerical Treatment of Differential Equations, Proc. 4th Seminar NUMDIFF-4, Teubner-Texte zur Mathematik (1987), Teubner: Teubner Leipzig), 8-18 · Zbl 0682.65041
[2] Albrecht, P., A new theoretical approach to RK methods, SIAM J. Numer. Anal., 24, 2, 391-406 (1987) · Zbl 0617.65067
[3] Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods (1987), Wiley: Wiley Chichester · Zbl 0616.65072
[4] Coleman, J. P., Numerical methods for \(y\)″ = \(f(x, y)\) via rational approximations for the cosine, IMA. J. Numer. Anal., 9, 145-165 (1989) · Zbl 0675.65072
[5] Coleman, J. P.; Ixaru, L. Gr., P-stability and exponential-fitting methods for \(y\)″ = \(f(x, y)\), IMA J. Numer. Anal., 16, 179-199 (1996) · Zbl 0847.65052
[6] Crisci, M. R.; Paternoster, B.; Russo, E., Fully parallel Runge-Kutta Nyström methods for ODEs with oscillating solutions, Appl. Numer. Math., 11, 143-158 (1993) · Zbl 0782.65090
[7] M.R. Crisci and B. Paternoster, Parallel Runge-Kutta Nyström methods, Ricerche Mat., to appear.; M.R. Crisci and B. Paternoster, Parallel Runge-Kutta Nyström methods, Ricerche Mat., to appear. · Zbl 0928.65087
[8] Dekker, K.; Verwer, J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, (CWI Monograph (1984), North-Holland: North-Holland Amsterdam) · Zbl 0571.65057
[9] Gautschi, W., Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math., 3, 381-397 (1961) · Zbl 0163.39002
[10] Hairer, E.; Norsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I. Nonstiff Problems, (Springer Series in Computational Mathematics, 8 (1987), Springer: Springer Berlin) · Zbl 1185.65115
[11] Ixaru, L. Gr., Numerical Methods for Differential Equations and Applications (1984), Reidel: Reidel Dordrecht · Zbl 0301.34010
[12] Ixaru, L. Gr., Operations on oscillatory functions, Comput. Phys. Comm., 105, 1-19 (1997) · Zbl 0930.65150
[13] Neta, B.; Ford, C. H., Families of methods for ordinary differential equations based on trigonometric polynomials, J. Comput. Appl. Math., 10, 33-38 (1984) · Zbl 0529.65050
[14] Raptis, A. D.; Allison, A. C., Exponential-fitting methods for the numerical solution of the Schrödinger equation, Comput. Phys. Comm., 44, 95-103 (1978) · Zbl 0664.65090
[15] Raptis, A. D.; Simos, T. E., A four-step phase-fitted method for the numerical integration of second order initial-value problems, BIT, 31, 160-168 (1991) · Zbl 0726.65089
[16] Simos, T. E.; Dimas, E.; Sideridis, A. B., A Runge-Kutta-Nyström method for the numerical integration of special second-order periodic initial-value problems, J. Comput. Appl. Math., 51, 317-326 (1994) · Zbl 0872.65066
[17] Sommeijer, B. P., A note on a diagonally implicit Runge-Kutta-Nyström method, J. Comput. Appl. Math., 19, 395-399 (1987) · Zbl 0637.65065
[18] Stiefel, E.; Bettis, D. G., Stabilization of Cowell’s method, Numer. Math., 13, 154-175 (1969) · Zbl 0219.65062
[19] van Daele, M.; de Meyer, H.; vanden Berghe, G., A modified Numerov integration method for general second order initial value problems, Internat. J. Comput. Math., 40, 117-127 (1991) · Zbl 0738.65060
[20] vanden Berghe, G.; de Meyer, H.; Vanthournout, J., A modified Numerov integration method for second order periodic initial-value problem, Internat. J. Comput. Math., 32, 233-242 (1990) · Zbl 0752.65059
[21] van der Houwen, P. J.; Sommeijer, B. P., Linear multistep methods with reduced truncation error for periodic initial-value problem, IMA J. Numer. Anal., 4, 479-489 (1984) · Zbl 0566.65055
[22] van der Houwen, P. J.; Sommeijer, B. P., Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution, SIAM J. Numer. Anal., 24, 595-617 (1987) · Zbl 0624.65058
[23] van der Houwen, P. J.; Sommeijer, B. P., Phase-lag analysis of implicit Runge-Kutta methods, SIAM J. Numer. Anal., 26, 214-228 (1989) · Zbl 0669.65055
[24] van der Houwen, P. J.; Sommeijer, B. P., Diagonally implicit Runge-Kutta Nyström methods for oscillatory problems, SIAM J. Numer. Anal., 26, 414-429 (1989) · Zbl 0676.65072
[25] van der Houwen, P. J.; Sommeijer, B. P.; Strehmel, K.; Weiner, R., On the numerical integration of second order initial value problems with a periodic forcing function, Computing, 37, 195-218 (1986) · Zbl 0589.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.