×

First order vortex dynamics. (English) Zbl 0932.58014

A non-dissipative vortex motion in a superconductor is considered. Using a Galilean invariant Lagrangian based on the Ginzburg-Landau model for time-dependent fields with kinetic terms linear in the first time derivatives of the fields, the author shows that for particular values of the coupling constants, the field dynamics reduces to first order differential equations for the vortex position. In this model, two vortices circle each other with constant speed and separation.

MSC:

58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
82D55 Statistical mechanics of superconductors
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Poole, C. P.; Farach, H. A.; Creswick, R. J., Superconductivity (1995), Academic Press: Academic Press San Diego
[2] Tilley, D. R.; Tilley, J., Superfluidity and Superconductivity (1990), Inst. of Phys. Publishing: Inst. of Phys. Publishing Bristol
[3] Oral, A.; Bending, S. J.; Henini, M., Appl. Phys. Lett., 69, 1324 (1996)
[4] Abrikosov, A. A., Sov. Phys. JETP, 5, 1174 (1957)
[5] Jacobs, L.; Rebbi, C., Phys. Rev. B, 19, 4486 (1979)
[6] Nielsen, H. B.; Olesen, P., Nucl. Phys. B, 61, 45 (1973)
[7] Vilenkin, A.; Shellard, E. P.S., Cosmic Strings and other Topological Defects (1994), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0978.83052
[8] Gor’kov, L. P.; Éliashberg, G. M., Sov. Phys. JETP, 27, 328 (1968)
[9] Chapman, S. J.; Howison, S. D.; Ockendon, J. R., Siam Rev., 34, 529 (1992)
[11] Stuart, D., Appl. Math. Lett., 9, 27 (1996)
[12] De Gennes, P. G., Superconductivity in Metals and Alloys (1966), Benjamin: Benjamin New York · Zbl 0138.22801
[13] Nozières, P.; Vinen, W. F., Philos. Mag., 14, 667 (1966)
[14] Papanicolaou, N.; Tomaras, T. N., Phys. Rev. B, 54, 12493 (1996)
[15] Aitchison, I. J.R.; Ao, P.; Thouless, D. L.; Zhu, X.-M., Phys. Rev. B, 51, 6531 (1995)
[16] Stone, M., Int. J. Mod. Phys. B, 9, 1359 (1995)
[17] Samols, T. M., Comm. Math. Phys., 145, 149 (1992)
[18] Manton, N. S., Phys. Lett. B, 110, 54 (1982)
[19] Shah, P. A., Nucl. Phys. B, 429, 259 (1994)
[20] Jackiw, R.; Pi, S.-Y., Phys. Rev. D, 42, 3500 (1990)
[21] Barashenkov, I. V.; Harin, A. O., Phys. Rev. Lett., 72, 1575 (1994)
[22] Dorsey, A. T., Phys. Rev. B, 46, 8376 (1992)
[23] Le Bellac, M.; Lévy-Leblond, J.-M., Nuovo Cim. B, 14, 217 (1973)
[24] Bogomolny, E. B., Sov. J. Nucl. Phys., 24, 449 (1976)
[25] Jaffe, A.; Taubes, C., Vortices and Monopoles (1980), Birkhäuser: Birkhäuser Boston · Zbl 0457.53034
[26] Taubes, C., Comm. Math. Phys., 72, 277 (1980)
[27] Liu, Q.; Stern, A., Phys. Rev. D, 52, 1300 (1995)
[28] Dziarmaga, J., Phys. Rev. B, 53, 8231 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.