Reconstructing volume tracking. (English) Zbl 0933.76069

Summary: A new algorithm for the volume tracking of interfaces in two dimensions is presented. The algorithm is based upon a well-defined, second-order geometric solution of a volume evolution equation. The method utilizes local discrete material volume and velocity data to track interfaces of arbitrarily complex topology. A linearity-preserving, piecewise linear interface geometry approximation ensures that solutions generated retain second-order spatial accuracy. Second-order temporal accuracy is achieved by virtue of a multidimensional unsplit time integration scheme. We detail our geometrically based solution method, in which material volume fluxes are computed systematically with a set of simple geometric tasks. We then interrogate the method by testing its ability to track interfaces through large, controlled topology changes, whereby an initially simple interface configuration is subjected to vortical flows. Numerical results for these strenuous test problems provide evidence for the algorithm’s improved solution quality and accuracy. \(\copyright\) Academic Press.


76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B47 Vortex flows for incompressible inviscid fluids


Full Text: DOI Link


[1] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506 (1968) · Zbl 0184.38503
[2] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335 (1979) · Zbl 0416.76002
[3] DeBar, R., Fundamentals of the KRAKEN Code (1974)
[4] Noh, W. F.; Woodward, P. R., SLIC (simple line interface method), Lecture Notes in Phys., 59, 330 (1976) · Zbl 0382.76084
[5] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201 (1981) · Zbl 0462.76020
[6] Chorin, A. J., Flame advection and propagation algorithms, J. Comput. Phys., 35, 1 (1980) · Zbl 0425.76086
[7] Barr, P. K.; Ashurst, W. T., An Interface Scheme for Turbulent Flame Propagation (1984)
[8] Ashgriz, N.; Poo, J. Y., FLAIR—flux line-segment model for advection and interface reconstruction, J. Comput. Phys., 93, 449 (1991) · Zbl 0739.76012
[10] Pilliod Jr., J. E., An Analysis of Piecewise Linear Interface Reconstruction Algorithms for Volume-of-Fluid Methods (1992)
[12] Nichols, B. D.; Hirt, C. W., Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies (1975) · Zbl 0258.76016
[13] Hirt, C. W.; Nichols, B. D., A computational method for free surface hydrodynamics, Journal of Pressure Vessel Technology, 103, 136 (1981) · Zbl 0462.76020
[15] Rider, W. J.; Kothe, D. B., Stretching and tearing interface tracking methods, The 12th AIAA CFD Conference (1995)
[16] Bowers, R. L.; Wilson, J. R., Numerical Modeling in Applied Physics and Astrophysics (1991) · Zbl 0786.76001
[18] Rudman, M., Volume tracking methods for interfacial flow calculations, International Journal for Numerical Methods in Fluids, 24, 671 (1997) · Zbl 0889.76069
[19] Boris, J. P.; Book, D. L., Flux-corrected transport I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys., 11, 38 (1973) · Zbl 0251.76004
[20] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys., 113, 134 (1994) · Zbl 0809.76064
[21] Youngs, D. L., An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code (1984)
[22] Addessio, F. L.; Carroll, D. E.; Dukowicz, J. K.; Harlow, F. H.; Johnson, J. N.; Kashiwa, B. A.; Maltrud, M. E.; Ruppel, H. M., CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip (1986)
[23] Holian, K. S.; Mosso, S. J.; Mandell, D. A.; Henninger, R., MESA: A 3-D Computer Code for Armor/Anti-Armor Applications (1991)
[24] Kothe, D. B.; Baumgardner, J. R.; Bennion, S. T.; Cerutti, J. H.; Daly, B. J.; Holian, K. S.; Kober, E. M.; Mosso, S. J.; Painter, J. W.; Smith, R. D.; Torrey, M. D., PAGOSA: A Massively-Parallel, Multi-Material Hydro-Dynamics Model for Three-Dimensional High-Speed Flow and High-Rate Deformation (1992)
[25] Perry, J. S.; Budge, K. G.; Wong, M. K.W.; Trucano, T. G., Rhale: A 3-D MMALE code for unstructured grids, Advanced Computational Methods for Material Modeling, AMD-Vol. 180/PVP-Vol. 268, 159 (1993)
[26] Puckett, E. G., A volume of fluid interface tracking algorithm with applications to computing shock wave rarefraction, Proceedings, 4th International Symposium on Computational Fluid Dynamics, 933 (1991)
[28] Puckett, E. G.; Saltzman, J. S., A 3D adaptive mesh refinement algorithm for multimaterial gas dynamics, Physica D, 60, 84 (1992) · Zbl 0779.76059
[29] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64 (1989) · Zbl 0665.76070
[30] Bell, J.; Berger, M.; Saltzman, J. S.; Welcome, M., Three dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM Journal on Scientific Computing, 15, 127 (1994) · Zbl 0793.65072
[32] Kothe, D. B.; Rider, W. J.; Mosso, S. J.; Brock, J. S.; Hochstein, J. I., Volume Tracking of Interfaces having Surface Tension in Two and Three Dimensions (1996)
[33] Rider, W. J.; Kothe, D. B.; Mosso, S. J.; Cerruti, J. H.; Hochstein, J. I., Accurate Solution Algorithms for Incompressible Multiphase Fluid Flows (1995)
[35] Kothe, D. B., et al. (1995)
[36] Puckett, E. G.; Almgren, A. S.; Bell, J. B.; Marcus, D. L.; Rider, W. J., A second-order projection method for tracking fluid interfaces in variable density incompressible flows, J. Comput. Phys., 130, 269 (1997) · Zbl 0872.76065
[37] O’Rourke, J., Computational Geometry in C (1993)
[38] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran (1986)
[39] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method of the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 257 (1989) · Zbl 0681.76030
[40] Dukowicz, J. K., New Methods for Conservative Rezoning (Remapping) for General Quadrilateral Meshes in Rezoning Workshop 1983 (1984) · Zbl 0534.76008
[41] Smolarkiewicz, P. K., The multi-dimensional Crowley advection scheme, Monthly Weather Review, 110, 1968 (1982)
[42] Leveque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33, 627 (1996) · Zbl 0852.76057
[43] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146 (1994) · Zbl 0808.76077
[44] Colella, P.; Woodward, P., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174 (1984) · Zbl 0531.76082
[45] Barth, T. J., Aspects of Unstructured Grids and Finite-Volume Solvers for Euler and Navier-Stokes Equations (1995)
[46] Swartz, B., The second-order sharpening of blurred smooth borders, Mathematics of Computation, 52, 675 (1989) · Zbl 0667.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.