×

On fuzzification of some concepts of graphs. (English) Zbl 0934.05099

The author discusses certain fuzzy sets which generalize the concepts of internally stable set (also known as independent set), externally stable set (also known as dominating set), not externally dominated set (which means a set of vertices such that there is no arc from outside it into it) and kernel. The structure of the fuzzy analogous is studied and it is shown that they are characterized as solutions of certain mathematical programming problems. In some particular cases an exhaustive description of the investigated sets is obtained. The paper is remarkably self-contained. Erratum: On page 366, line 9, \(y\in A\) should be \(y\not\in A\).

MSC:

05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
05C99 Graph theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Baldwin, J.F.; Pilworth, B.W., Axiomatic approach to implication for approximate reasoning with fuzzy logic, Fuzzy sets and systems, 3, 193-219, (1980) · Zbl 0434.03021
[2] Bandler, W.; Kohout, L., Fuzzy power sets and fuzzy implication operators, Fuzzy sets and systems, 4, 13-30, (1980) · Zbl 0433.03013
[3] Batteau, P.; Lagrèze, E.J.; Monjardet, B., Analyse et agrégation des préférences, Economica, (1981)
[4] Berge, C., Théorie des graphes et ses applications, (1958), Dunod Paris · Zbl 0214.50804
[5] Berge, C., Nouvelles extensions du noyau d’un graphe et ses applications en théorie des jeux, Publi-econ., 6, 5-11, (1973) · Zbl 0257.05113
[6] Bondareva, O.N., Revealed fuzzy preferences, (), 71-79 · Zbl 0727.90004
[7] Carvallo, M., Monographie des treillis et algèbre de Boole, (1962), Gauthier-Villars Paris · Zbl 0111.02302
[8] Dubois, D.; Prade, H., Fuzzy set and systems: theory and applications, () · Zbl 0605.03021
[9] Fodor, J.; Roubens, M., Fuzzy preference modelling and multicriteria decision support, (1994), Kluwer Academic Publishers Dordrecht · Zbl 0827.90002
[10] Hansen, P.; Mundeleer, M.A.; Vincke, P., Quasi-kernels of outranking relations, ()
[11] Jacas, J.; Recasens, J., Eigen vectors and generators of fuzzy relations, () · Zbl 0807.04003
[12] Kitainik, L., Fuzzy decision procedures with binary relations — theory and application, (1993), Kluwer Academic Publishers Dordrecht · Zbl 0821.90001
[13] Kitainik, L., Fuzzy inclusion and fuzzy dichotomous decision procedures, (), 154-170 · Zbl 0638.90004
[14] Mac Lane, S.; Birkhoff, G., Algèbre, 2 — LES grands théorèmes, (1971), Gauthier-Villars Paris · Zbl 0213.28901
[15] OFTA, Logique floue, (1994), Masson Paris
[16] Orlovsky, S.A., Decision-making with a fuzzy preference relation, Fuzzy sets and systems, 1, 155-167, (1978) · Zbl 0396.90004
[17] Orlovsky, S.A., Calculus of decomposable properties, () · Zbl 0435.90008
[18] Perny, P., Modélisation, agrégation et exploitation de préférences floues dans une problématique de rangement, Thèse pour l’obtention du titre de docteur en Méthodes scientifiques de gestion, (1992)
[19] Richardson, M., Solutions of irreflexive relations, Ann. math., 58, 3, 573-590, (1953) · Zbl 0053.02902
[20] Roberts, F.S., Discrete mathematical models, (1976), Prentice-Hall NJ, Englewood Cliffs
[21] Roth, A.E., Subsolutions and the supercore of cooperative games, Math. oper. res., 1, 43-49, (1976) · Zbl 0457.90095
[22] Roy, B., Algèbre moderne et théorie des graphes, (1970), Dunod Paris
[23] Roy, B.; Bouysson, D., Aide multicritère à la décision: Méthodes et cas, Economica, (1993), Paris · Zbl 0925.90230
[24] Rudeanu, S., On solving Boolean equations in the theory of graphs, Rev. roum. math. pures et appl., XI, 6, 653-664, (1966) · Zbl 0161.21002
[25] Rudeanu, S., Notes sur l’existence et l’unicité du noyau d’un graphe — applications des équations booléennes, Rev. fran. rech. oper., 41, 301-310, (1966) · Zbl 0149.21403
[26] Sanchez, E., Eigen fuzzy sets and fuzzy relations, J. math. anal. appl., 81, 399-421, (1981) · Zbl 0466.04003
[27] Schmidt, G.; Ströhlein, T., Relationen und graphen, (1989), Springer Berlin · Zbl 0705.68083
[28] Schmidt, G.; Ströhlein, T., On kernels of graphs and solutions of games: A synopsis based on relations and fixpoints, SIAM J. algebra discrete math., 6, 1, (1985) · Zbl 0554.05032
[29] Schwartz, T., The logic of collective choice, (1986), Columbia University Press New York
[30] Sinha, D.; Dougherty, E., Fuzzification of set inclusion: theory and applications, Fuzzy sets and systems, 55, 15-42, (1993) · Zbl 0788.04007
[31] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. math., 5, 285-309, (1955) · Zbl 0064.26004
[32] von Neumann, J.; Morgenstern, O., Theory of games and economic behavior, (1944), Princeton Univ. Press Princeton, NJ · Zbl 0063.05930
[33] Yeh, R.T.; Bang, S.Y., Fuzzy relations, fuzzy graphs, and their applications to clustering analysis, () · Zbl 0315.68069
[34] Zadeh, L.A., Fuzzy sets, Inform. and control, 8, 338-353, (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.