×

Two views of the theory of rough sets in finite universes. (English) Zbl 0935.03063

Summary: This paper presents and compares two views of the theory of rough sets. The operator-oriented view interprets rough set theory as an extension of set theory with two additional unary operators. Under such a view, lower and upper approximations are related to the interior and closure operators in topological spaces, the necessity and possibility operators in modal logic, and lower and upper approximations in interval structures. The set-oriented view focuses on the interpretation and characterization of members of rough sets. Iwinski type rough sets are formed by pairs of definable (composed) sets, which are related to the notion of interval sets. Pawlak type rough sets are defined based on equivalence classes of an equivalence relation on the power set. The relation is defined by the lower and upper approximations. In both cases, rough sets may be interpreted by, or related to, families of subsets of the universe, i.e., elements of a rough set are subsets of the universe. Alternatively, rough sets may be interpreted using elements of the universe based on the notion of rough membership functions. Both operator-oriented and set-oriented views are useful in the understanding and application of the theory of rough sets.

MSC:

03E72 Theory of fuzzy sets, etc.
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bonikowski, Z., A certain conception of the calculus of rough sets, Notre Dame J. Formal Logic, 33, 412-421 (1992) · Zbl 0762.04001
[2] Bonikowski, Z., Algebraic structures of rough sets, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 242-247 · Zbl 0819.04009
[3] Bryniarski, E., A calculus of rough sets of the first order, Bull. Polish Acad. Sci. Math., 37, 71-77 (1989) · Zbl 0756.04002
[4] Bundy, A., Incidence calculus: A mechanism for probabilistic reasoning, J. Automat. Reason., 1, 263-283 (1985) · Zbl 0615.68067
[5] Chakraborty, M. K.; Banerjee, M., Rough consequence and rough algebra, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 196-207 · Zbl 0818.03014
[6] Chanas, S.; Kuchta, D., Further remarks on the relation between rough and fuzzy sets, Fuzzy Sets and Systems, 47, 391-394 (1992) · Zbl 0755.04008
[7] Chellas, B. F., Modal Logic: An Introduction (1980), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0431.03009
[8] Chuchro, M., On rough sets in topological Boolean algebras, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 157-166 · Zbl 0822.68106
[9] Comer, S., On connections between information systems, rough sets, and algebraic logic, (Rauszer, C., Algebraic Methods in Logic and Computer Science. Algebraic Methods in Logic and Computer Science, Banach Center Publications, Vol. 28 (1993), Polish Academy of Sciences), 117-124 · Zbl 0793.03074
[10] Dubois, D.; Prade, H., Rough fuzzy sets and fuzzy rough sets, Internat. J. Gen. Systems, 17, 191-209 (1990) · Zbl 0715.04006
[11] Fagin, R.; Halpern, J. Y., Uncertainty, belief, and probability, Comput. Intell., 7, 160-173 (1991)
[12] Gehrke, M.; Walker, E., On the structure of rough sets, Bull. Polish Acad. Sci. Math., 40, 235-245 (1992) · Zbl 0778.04002
[13] Goodman, I.; Nguyen, H.; Walker, E., Conditional Inference and Logic for Intelligent Systems (1991), North-Holland: North-Holland New York
[14] Hughes, G. E.; Cresswell, M. J., An Introduction to Modal Logic (1968), Methuen: Methuen London · Zbl 0205.00503
[15] Iwinski, T. B., Algebraic approach to rough sets, Bull. Polish Acad. Sci. Math., 35, 673-683 (1987) · Zbl 0639.68125
[16] Kortelainen, J., On relationship between modified sets, topological spaces and rough sets, Fuzzy Sets and Systems, 61, 91-95 (1994) · Zbl 0828.04002
[17] Kramosil, I., Definition and recognition of classical sets by the rough ones, Problem Control and Inform. Theory, 20, 77-95 (1991) · Zbl 0738.62004
[18] Lemmon, E. J., Algebraic semantics for modal logics I,II, J. Symbolic Logic, 31, 191-218 (1966) · Zbl 0147.24805
[19] Lin, T. Y., Topological and fuzzy rough sets, (Slowinski, R., Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory (1992), Kluwer Academic: Kluwer Academic Boston), 287-304
[20] Lin, T. Y., Fuzzy reasoning and rough sets, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 343-348 · Zbl 0827.68106
[21] (Lin, T. Y., Proceedings of the CSC ’95 Workshop on Rough Sets and Database Mining (1995), San Jose State University)
[22] Lin, T. Y.; Liu, Q., Rough approximate operators: Axiomatic rough set theory, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 256-260 · Zbl 0818.03028
[24] Lin, T. Y.; Liu, Q.; Huang, K. J.; Chen, W., Rough sets, neighborhood systems and approximation, (Proceedings of the Fifth International Symposium on Methodologies of Intelligent Systems (1990)), 130-141
[25] (Lin, T. Y.; Wildberger, A. M., Soft Computing (1995), Society for Computer Simulation: Society for Computer Simulation San Diego)
[26] Moore, R. E., Interval Analysis (1966), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J · Zbl 0176.13301
[27] Nakamura, A.; Gao, J. M., A logic for fuzzy data analysis, Fuzzy Sets and Systems, 39, 127-132 (1991) · Zbl 0729.03015
[28] Negoi∋ǎ, C. V.; Ralescu, D. A., Applications of Fuzzy Sets to Systems Analysis (1975), Birkhäuser: Birkhäuser Basel · Zbl 0326.94002
[29] Nguyen, H. T., Intervals in Boolean rings: Approximation and logic, Found. Comput. Decision Sci., 17, 131-138 (1992) · Zbl 0781.06011
[30] Nguyen, H. T.; Walker, E. A., A history and introduction to the algebra of conditional events and probability logic, IEEE Trans. Systems Man Cybernet., 24, 1671-1675 (1994) · Zbl 1371.03031
[31] Novotny, M.; Pawlak, Z., On rough equalities, Bull. Polish Acad. Sci. Math., 33, 99-113 (1985) · Zbl 0569.68084
[32] Obtulowicz, A., Rough sets and Heyting algebra valued sets, Bull. Polish Acad. Sci. math., 35, 667-671 (1987) · Zbl 0642.03039
[33] Orlowska, E., Logic of indiscernibility relations, Bull. Polish Acad. Sci. Math., 33, 475-485 (1985) · Zbl 0584.03013
[34] Orlowska, E., Logical aspects of learning concepts, Internat. J. Approx. Reason., 2, 349-364 (1988) · Zbl 0656.68094
[35] Orlowska, E., Rough set semantics for non-classical logics, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 143-148
[36] Orlowska, E.; Pawlak, Z., Measurement and indiscernibility, Bull. Polish Acad. Sci. Math., 32, 617-624 (1984) · Zbl 0583.68051
[37] Pagliani, P., A pure logic-algebraic analysis of rough top and rough bottom equalities, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 225-241
[38] Pawlak, Z., Rough sets, Internat. J. Comput. & Inform. Sci., 11, 341-356 (1982) · Zbl 0501.68053
[39] Pawlak, Z., Rough classification, Internat. J. Man-Machine. Stud., 20, 469-483 (1984) · Zbl 0541.68077
[40] Pawlak, Z., Rough sets and fuzzy sets, Fuzzy Sets and Systems, 17, 99-102 (1985) · Zbl 0588.04004
[41] Pawlak, Z., Rough logic, Bull. Polish Acad. Sci. Tech. Sci., 35, 253-258 (1987) · Zbl 0645.03019
[42] Pawlak, Z., Rough sets: Theoretical Aspects of Reasoning about Data (1991), Kluwer Academic: Kluwer Academic Boston · Zbl 0758.68054
[43] Pawlak, Z., Rough sets: A new approach to vagueness, (Zadeh, L. A.; Kacprzyk, J., Fuzzy Logic for the Management of Uncertainty (1992), Wiley: Wiley New York), 105-118
[44] Pawlak, Z., Hard and soft sets, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 130-135 · Zbl 0819.04008
[45] Pawlak, Z.; Skowron, A., Rough membership functions, (Zadeh, L. A.; Kacprzyk, J., Fuzzy Logic for the Management of Uncertainty (1994), Wiley: Wiley New York), 251-271 · Zbl 0794.03045
[46] Pawlak, Z.; Wong, S. K.M.; Ziarko, W., Rough sets: Probabilistic versus deterministic approach, Internat. J. Man-Machine Stud., 29, 81-95 (1988) · Zbl 0663.68094
[47] Pomykala, J. A., Approximation operations in approximation space, Bull. Polish Acad. Sci. Math., 35, 653-662 (1987) · Zbl 0642.54002
[48] Pomykala, J.; Pomykala, J. A., The Stone algebra of rough sets, Bull. Polish Acad. Sci. Math., 36, 495-508 (1988) · Zbl 0786.04008
[49] Rasiowa, H., An Algebraic Approach to Non-classical Logics (1974), North-Holland: North-Holland Amsterdam · Zbl 0299.02069
[50] Shafer, G., Belief functions and possibility measures, (Bezdek, J. C., Analysis of Fuzzy Information, Vol. 1: Mathematics and Logic (1987), CRC Press: CRC Press Boca Raton, Fla), 51-84
[51] Skowron, A., The rough sets theory and evidence theory, Fund. Inform., XIII, 245-262 (1990) · Zbl 0752.94023
[52] Skowron, A.; Grzymala-Busse, J., From rough set theory to evidence theory, (Yager, R. R.; Fedrizzi, M.; Kacprzyk, J., Advances in the Dempster-Shafer Theory of Evidence (1994), Wiley: Wiley New York), 193-236
[53] (Slowinski, R., Intelligent Decision Support: Handbook of Applications and Advances of the Rough SEts Theory (1992), Kluwer Academic: Kluwer Academic Boston) · Zbl 0820.68001
[54] Wasilewska, A., Topological rough algebras (1995), Manuscript
[55] Wiweger, A., On topological rough sets, Bull. Polish Acad. Sci. Math., 37, 89-93 (1989) · Zbl 0755.04010
[56] Wong, S. K.M.; Wang, L. S.; Yao, Y. Y., On modeling uncertainty with interval structures, Comput. Intell., 11, 406-426 (1995)
[57] Wong, S. K.M.; Ziarko, W., Comparison of the probabilistic approximate classification and the fuzzy set model, Fuzzy Sets and Systems, 21, 357-362 (1987) · Zbl 0618.60002
[58] Wybraniec-Skardowska, U., On a generalization of approximation space, Bull. Polish Acad. Sci. Math., 37, 51-61 (1989) · Zbl 0755.04011
[59] Wygralak, M., Rough sets and fuzzy sets—some remarks on interreletations, Fuzzy Sets and Systems, 29, 241-243 (1989) · Zbl 0664.04010
[60] Yao, Y. Y., Interval-set algebra for qualitative knowledge representation, (Proceedings of the Fifth International Conference on Computing and Information (1993)), 370-375
[61] Yao, Y. Y., On combining rough and fuzzy sets, (Lin, T. Y., Proceedings of the CSC ’95 Workshop on Rough Sets and Database Mining (1995), San Jose State University), 9
[62] Yao, Y. Y.; Li, X., Uncertain reasoning with interval-set algebra, (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London), 178-185 · Zbl 0819.68119
[63] Yao, Y. Y.; Li, X.; Lin, T. Y.; Liu, Q., Representation and classification of rough set models, (Lin, T. Y.; Wildberger, A. M., Soft Computing (1995), Society for Computer Simulation: Society for Computer Simulation San Diego), 44-47
[64] Yao, Y. Y.; Lin, T. Y., Generalization of rough sets using modal logic, Intell. Automat. and Soft Comput. Internat. J., 2, 103-120 (1996)
[65] Yao, Y. Y.; Noroozi, N., A unified model of set-based computation, (Lin, T. Y.; Wildberger, A. M., Soft Computing (1995), Society for Computer Simulation: Society for Computer Simulation San Diego), 252-255
[66] Yao, Y. Y.; Wong, S. K.M., A decision theoretic framework for approximating concepts, Internat. J. Man-Machine Stud., 37, 793-809 (1992)
[67] Yao, Y. Y.; Wong, S. K.M.; Wang, L. S., A non-numeric approach to uncertain reasoning, Internat. J. Gen. Systems, 23, 343-359 (1995) · Zbl 0850.68298
[68] Zakowski, W., Approximations in the space \((U\), II), Demonstratio Math., XVI, 761-769 (1983) · Zbl 0553.04002
[69] Zadeh, L. A., Fuzzy sets, Inform. & Control, 8, 338-353 (1965) · Zbl 0139.24606
[70] (Ziarko, W. P., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag: Springer-Verlag London) · Zbl 0825.68612
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.