Banach algebras of measures on the real line with a given asymptotics of distributions at infinity. (English. Russian original) Zbl 0936.46021

Sib. Math. J. 40, No. 3, 565-576 (1999); translation from Sib. Mat. Zh. 40, No. 3, 660-672 (1999).
Let \(\nu\) be a \(\sigma\)-additive complex-valued measure defined on the bounded Borel subsets of \({\mathbb R}\). Let \(\mu^{n*}\) be the \(n\)th convolution of \(\mu\). Given \(\gamma>0\), the set \(S(\gamma)=\{\mu':\int_{\mathbb R}e^{\gamma x}|\mu'|(dx)<\infty\}\) is a Banach algebra of measures. The authors assume that \(\mu\in S(\gamma)\). Let \(G\in S(\gamma)\) be an unbounded probability distribution on \({\mathbb R}^+\) such that
(i) the limit \(\lim_{x\to\infty}G^{2*}([x,\infty))/G([x,\infty))= 2\widehat\mu(\gamma)\) exists, where \(\widehat\mu(\gamma)=\int_{\mathbb R}e^{\gamma x}\mu(dx)\);
(ii) for every fixed \(y\), \(G([x+y,\infty))/G([x,\infty))\to e^{-\gamma y}\) as \(x\to\infty\).
Let \(f(z)=\sum_{n=0}^\infty a_n z^n\) be an analytic function in some domain \(D\subset{\mathbb C}\) entirely including the spectrum of \(\mu\). If the limit of the relation \(\mu([x,\infty))/G([x,\infty))\) as \(x\to\infty\) exists then the measure \(f(\mu)=\sum_{n=0}^\infty a^n\mu^{n*}\) has the following property: \[ f(\mu)([x,\infty)) \sim f'(\widehat\mu(\gamma))\mu([x,\infty)), \quad x\to \infty. \]
The article is a continuation of the paper by the second author [Sib. Math. J. 29, No. 4, 647-655 (1988; Zbl 0667.46016)].


46E27 Spaces of measures
46H05 General theory of topological algebras
60E99 Distribution theory


Zbl 0667.46016
Full Text: DOI


[1] J. Chover, P. Ney, and S. Wainger, ”Functions of probability measures,” J. Anal. Math.,26, 255–302 (1973). · Zbl 0276.60018
[2] J. B. G. Frenk, On Banach Algebras, Renewal Measures and Regenerative Processes, Centre for Mathematics and Computer Science, Amsterdam (1987). · Zbl 0624.60099
[3] M. S. Sgibnev, ”On Banach algebras of measures of the classS({\(\gamma\)}),” Sibirsk. Mat. Zh.,29, No. 5, 162–171 (1988). · Zbl 0653.46027
[4] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups [Russian translation], Izdat. Inostr. Lit., Moscow (1962).
[5] B. A. Rogozin and M. S. Sgibnev, ”Banach algebras of measures on the line,” Sibirsk. Mat. Zh.,21, No. 2, 160–169 (1980). · Zbl 0457.46024
[6] Yu. A. Shreįder, ”Construction of maximal ideals in rings with convolution,” Mat. Sb.,27, No. 2, 297–318 (1950).
[7] M. A. Naįmark, Normed Rings [in Russian], Nauka, Moscow (1968).
[8] B. A. Rogozin, ”Asymptotic behavior of coefficients in the Levy-Wiener theorems on absolutely convergent trigonometric series,” Sibirsk. Mat. Zh.,14, No. 6, 1304–1312 (1973). · Zbl 0271.42003
[9] M. Essén, ”Banach algebra methods in renewal theory,” J. Anal. Math.,26, 303–336 (1973). · Zbl 0327.60052
[10] A. A. Borovkov and D. A. Korshunov, ”Large deviation probabilities for one-dimensional Markov chains. I: Stationary distributions,” Teor. Veroyatn. Primen.,41, No. 1, 3–30 (1996). · Zbl 0888.60025
[11] A. A. Borovkov and D. A. Korshunov, Large Deviation Probabilities for One-Dimensional Markov Chains. I: Stationary Distributions [Preprint, No. 10], Inst. Mat. (Novosibirsk), Novosibirsk (1995). · Zbl 0888.60025
[12] K. B. Athreya and P. E. Ney, Branching Processes, Springer, Berlin (1972). · Zbl 0259.60002
[13] A. A. Borovkov, Stochastic Processes in Queueing Theory [in Russian], Nauka, Moscow (1972). · Zbl 0275.60102
[14] J. Chover, P. Ney, and S. Wainger, ”Degeneracy properties of subcritical branching processes,” Ann. Probab.,1, 663–673 (1973). · Zbl 0387.60097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.