Sequeira, Adélia (ed.); Beirão da Veiga, Hugo (ed.); Videman, Juha Hans (ed.) Applied nonlinear analysis. In honor of the 70th birthday of Professor Jindřich Nečas. (English) Zbl 0939.00054 New York, NY: Kluwer Academic/Plenum Publishers. xxviii, 548 p. (1999). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Alliot, Frédéric; Amrouche, Cherif, On the regularity and decay of the weak solutions to the steady-state Navier-Stokes equations in exterior domains, 1-18 [Zbl 0953.35110]Chen, G. Q.; Rajagopal, K. R.; Tao, Luoyi, A note on turbulence modeling., 19-32 [Zbl 1058.76568]Daněček, Josef; Viszus, Eugen, \(L^{2,\lambda}\)-regularity for nonlinear elliptic systems of second order, 33-40 [Zbl 0954.35053]Drábek, Pavel, On the Fredholm alternative for nonlinear homogeneous operators, 41-48 [Zbl 0956.47036]Eck, Christof; Jarušek, Jiří, Existence of solutions to a nonlinear coupled thermo-viscoelastic contact problem with small Coulomb friction, 49-65 [Zbl 0964.35160]Egorov, Yuri Vladimirovich; Kondratiev, Vladimir Alexandrovich, On some global existence theorems for a semilinear parabolic problem, 67-78 [Zbl 0967.35073]Eisner, Jan; Kučera, Milan, Bifurcation of solutions to reaction-diffusion systems with jumping nonlinearities., 79-96 [Zbl 1058.35526]Feistauer, Miloslav; Schwab, Christoph, Coupled problems for viscous incompressible flow in exterior domains, 97-116 [Zbl 0953.35111]Fonseca, Irene; Malý, Jan, Remarks on the determinant in nonlinear elasticity and fracture mechanics, 117-132 [Zbl 0962.49012]Franců, Jan, On modelling of Czochralski flow, the case of non plane free surface., 133-148 [Zbl 1058.76546]Galdi, Giovanni Paolo, Symmetric stationary solutions to the plane exterior Navier-Stokes problem for arbitrary large Reynolds number, 149-158 [Zbl 0954.35126]Girault, Vivette; Glowinski, Roland; Pan, T. W., A fictitious-domain method with distributed multiplier for the Stokes problem, 159-174 [Zbl 0954.35127]Hlaváček, Ivan, Reliable solution of a unilateral contact problem with friction, considering uncertain input data, 175-183 [Zbl 0968.35116]Hecht, Frédéric; Lions, Jacques-Louis; Pironneau, Olivier, Domain decomposition algorithm for computer aided design, 185-198 [Zbl 0954.65010]Kačur, Jozef, Solution of convection-diffusion problems with the memory terms, 199-212 [Zbl 0953.65098]Kaplický, Petr; Málek, Josef; Stará, Jana, On global existence of smooth two-dimensional steady flows for a class of non-Newtonian fluids under various boundary conditions, 213-229 [Zbl 0953.35120]Kawohl, Bernd; Kutev, Nikolay, Viscosity solutions for degenerate and nonmonotone elliptic equations, 231-254 [Zbl 0960.35040]Klouček, Petr, Remarks on compactness in the formation of fine structures, 255-270 [Zbl 0990.74046]Křížek, Michael; Liu, Liping; Neittaanmäki, Pekka, Finite element analysis of a nonlinear elliptic problem with a pure radiation condition, 271-280 [Zbl 0953.65081]Kračmar, Stanislav; Novotný, Antonín; Pokorný, Milan, Estimates of three-dimensional Oseen kernels in weighted \(L^p\) spaces, 281-316 [Zbl 0961.35105]Kufner, Alois, Hardy’s inequality and spectral problems of nonlinear operators, 317-323 [Zbl 0956.47037]Leonardi, Salvatore, Remarks on the regularity of solutions of elliptic systems, 325-344 [Zbl 0952.35034]Lovíšek, Ján, Singular perturbations in optimal control problem, 345-354 [Zbl 0960.49002]Málek, Josef; Roubíček, Tomáš, Optimization of steady flows for incompressible viscous fluids, 355-372 [Zbl 0962.49017]Matušů-Nečasová, Šárkaa; Sequeira, Adélia; Videman, Juha Hans, Asymptotic behaviour of compressible Maxwell fluids in exterior domains, 373-390 [Zbl 0957.35112]Neustupa, Jiří; Penel, Patrick, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, 391-402 [Zbl 0953.35113]de Oliveira, Paula; Santos, José, On a class of high resolution methods for solving hyperbolic conservation laws with source terms, 403-416 [Zbl 0953.65059]Padula, Mariarosaria, On the decay to zero of the \(L^2\)-norms of perturbations to a viscous compressible fluid motion exterior to a compact obstacle, 417-426 [Zbl 0953.35114]Penel, Patrick; Straškraba, Ivan, Global behavior of compressible fluid with a free boundary and large data, 427-442 [Zbl 0953.35115]Rautmann, Reimund, A geometric approach to dynamical systems in \(\mathbb{R}^N\), 443-456 [Zbl 0965.37017]Rodrigues, José Francisco; Urbano, José Miguel, On a three-dimensional convective Stefan problem for a non-Newtonian fluid, 457-468 [Zbl 0954.35157]Rokyta, Mirko, Replacing \(H\) by \(H^2\), 469-484 [Zbl 0953.65079]Růžička, Michael, Flow of shear dependent electrorheological fluids: Unsteady space periodic case, 485-504 [Zbl 0954.35138]Schonbek, Maria Elena, On decay of solutions to the Navier-Stokes equations, 505-512 [Zbl 0954.35131]Šilhavý, Miloslav, Convexity conditions for rotationally invariant functions in two dimensions, 513-530 [Zbl 0959.26008]Wolf, Joerg, Hölder continuity of weak solutions to certain nonlinear parabolic systems in two space dimensions, 531-546 [Zbl 0961.35066]John, Oldřich; Málek, Josef; Stará, Jana, Jindřich Nečas. (With list of most significant works), vii-xvii [Zbl 0953.01020] Cited in 1 Document MSC: 00B30 Festschriften 00B25 Proceedings of conferences of miscellaneous specific interest 35-06 Proceedings, conferences, collections, etc. pertaining to partial differential equations 76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics Keywords:Dedication; Applied nonlinear analysis Biographic References: Nečas, J. PDF BibTeX XML Cite \textit{A. Sequeira} (ed.) et al., Applied nonlinear analysis. In honor of the 70th birthday of Professor Jindřich Nečas. New York, NY: Kluwer Academic/Plenum Publishers (1999; Zbl 0939.00054)