Chae, Dongho; Imanuvilov, Oleg Yu. Generic solvability of the axisymmetric 3-D Euler equations and the 2-D Boussinesq equations. (English) Zbl 0939.35149 J. Differ. Equations 156, No. 1, 1-17 (1999). Using a new criterion for finite-time blow-up of a smooth axisymmetric solutions to incompressible Euler equations, the authors prove global existence of smooth axisymmetric solutions in a domain of cylindrical type, which can be the whole \(\mathbb{R}^3\). Then using this results, the authors establish the solvability of Euler equations in cylindrical domains which do not contain the axis of symmetry. Similar results are also proved for two-dimensional Boussinesq system. Reviewer: O.Titow (Berlin) Cited in 26 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids Keywords:finite-time blow-up; smooth axisymmetric solutions; incompressible Euler equations; global existence; cylindrical domains; two-dimensional Boussinesq system PDF BibTeX XML Cite \textit{D. Chae} and \textit{O. Yu. Imanuvilov}, J. Differ. Equations 156, No. 1, 1--17 (1999; Zbl 0939.35149) Full Text: DOI References: [1] Beale, J. T.; Kato, T.; Majda, A., Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94, 61-66 (1984) · Zbl 0573.76029 [2] Chae, D.; Kim, N., On the breakdown of axisymmetric smooth solution for 3-D Euler equation, Comm. Math. Phys., 178, 391-398 (1996) · Zbl 0858.76068 [3] Chae, D.; Nam, H., Local existence and blow-up criterion for the Boussinesq equations, Proc. Royal Soc. Edinburgh A, 127, 935-946 (1997) · Zbl 0882.35096 [4] Constantin, P., Geometric statistics in turbulence, SIAM Rev., 36, 73-98 (1994) · Zbl 0803.35106 [5] Ferrari, A., On the blow-up of solutions of the 3-D Euler equations in a bounded domain, Comm. Math. Phys., 155, 277-294 (1993) · Zbl 0787.35071 [6] Fursikov, A. V., On some control problems and results concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier-Stokes and Euler systems, Soviet Math. Dokl., 21, 889-893 (1980) · Zbl 0481.35001 [7] Kato, T., Nonstationary flows of viscous and ideal fluids in \(R^3\), J. Functional Anal., 9, 296-305 (1972) · Zbl 0229.76018 [8] Kato, T., On classical solutions of the two-dimensional non-stationary Euler equations, Arch. Rational Mech. Anal., 25, 188-200 (1967) · Zbl 0166.45302 [9] Lions, J. L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications (1972), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0223.35039 [10] Majda, A., Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math., 39, S187-S220 (1986) · Zbl 0595.76021 [11] Raymond, X., Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations, 19, 321-334 (1994) · Zbl 0795.35063 [12] Shirota, T.; Yanagisawa, T., A continuation principle for the 3-D Euler equations for incompressible fluids in a bounded domain, Proc. Japan Acad. Ser. A, 69, 77-82 (1993) · Zbl 0790.35086 [13] Shirota, T.; Yanagisawa, T., Note on global existence for axially symmetric solutions of the Euler system, Proc. Japan Acad. Ser. A, 70, 299-304 (1994) · Zbl 0831.35141 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.