Sjöstrand, J.; Wang, W.-M. Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green’s functions. (English) Zbl 0941.47033 Ann. Sci. Éc. Norm. Supér. (4) 32, No. 3, 347-414 (1999). The authors study holomorphic measures which are – in a certain sense – close to complex Gaussian measures. It turns out that these measures can be reduced to product measures of real Gaussians using the maximum principle on a complex domain. The work is motivated by the investigation of a class of random Schrödinger operators. Using these techniques it is shown that their Green’s function decays exponentially. Reviewer: Heinz Siedentop (Regensburg) Cited in 3 Documents MSC: 47B80 Random linear operators 46G12 Measures and integration on abstract linear spaces Keywords:Anderson model; supersymmetric measures; holomorphic measures; Gaussian measures; random Schrödinger operators; Green’s function PDF BibTeX XML Cite \textit{J. Sjöstrand} and \textit{W. M. Wang}, Ann. Sci. Éc. Norm. Supér. (4) 32, No. 3, 347--414 (1999; Zbl 0941.47033) Full Text: DOI Numdam EuDML References: [1] P. ANDERSON , Absence of diffusion in certain random lattices , Phys. Rev. 109, 1492 ( 1958 ). [2] M. AIZENMAN and S. MOLCHANOV , Localization at large disorder and at extreme energies : an elementary derivation , Commun. Math. Phys. 157, 245 ( 1993 ). Article | MR 95a:82052 | Zbl 0782.60044 · Zbl 0782.60044 [3] F. A. BEREZIN , The method of second quantization , New York : Academic press, 1966 . MR 34 #8738 | Zbl 0151.44001 · Zbl 0151.44001 [4] A. BOVIER , M. CAMPANINO , A. KLEIN , and F. PEREZ , Smoothness of the density of states in the Anderson model at high disorder , Commun. Math. Phys. 114 439-461, ( 1988 ). Article | MR 89c:82050 | Zbl 0644.60057 · Zbl 0644.60057 [5] F. CONSTANTINESCU , J. FRÖHLICH , and T. SPENCER , Analyticity of the density of states and replica method for random Schrödinger operators on a lattice , J. Stat. Phys. 34 571-596, ( 1984 ). Zbl 0591.60060 · Zbl 0591.60060 [6] H. VON DREIFUS and A. KLEIN , A new proof of localization in the Anderson tight binding model , Commun. Math. Phys. 124, 285-299 ( 1989 ). Article | MR 90k:82056 | Zbl 0698.60051 · Zbl 0698.60051 [7] E. N. ECONOMU , Green’s functions in quantum physics , Springer Series in Solid State Sciences 7, 1979 . MR 82j:81001 [8] J. FRÖHLICH , F. MARTINELLI , E. SCOPPOLA and T. SPENCER , Constructive proof of localization in Anderson tight binding model , Commun. Math. Phys. 101, 21-46 ( 1985 ). Article | MR 87a:82047 | Zbl 0573.60096 · Zbl 0573.60096 [9] J. FRÖHLICH and T. SPENCER , Absence of diffusion in the Anderson tight binding model for large disorder or low energy , Commun. Math. Phys. 88, 151-184 ( 1983 ). Article | MR 85c:82004 | Zbl 0519.60066 · Zbl 0519.60066 [10] B. HELFFER and J. SJÖSTRAND , On the correlation for Kac-like models in the convex case , J. of Stat. Phys. ( 1994 ). Zbl 0946.35508 · Zbl 0946.35508 [11] A. KLEIN , The supersymmetric replica trick and smoothness of the density of states for the random Schrödinger operators , Proceedings of Symposium in Pure Mathematics, 51, 1990 . MR 92b:82076 | Zbl 0709.60105 · Zbl 0709.60105 [12] A. KLEIN and A. SPIES , Smoothness of the density of states in the Anderson model on a one dimensional strip , Annals of Physics 183, 352-398 ( 1988 ). MR 89k:82012 | Zbl 0635.60077 · Zbl 0635.60077 [13] J. SJÖSTRAND , Ferromagnetic integrals, correlations and maximum principle , Ann. Inst. Fourier 44, 601-628 ( 1994 ). Numdam | MR 95h:81015 | Zbl 0831.35031 · Zbl 0831.35031 [14] J. SJÖSTRAND , Correlation asymptotics and Witten Laplacians , Algebra and Analysis 8 ( 1996 ). Zbl 0877.35084 · Zbl 0877.35084 [15] J. SJÖSTRAND and W. M. WANG , Exponential decay of averaged Green functions for the random Schrödinger operators, a direct approach , Ann. Scient. Éc. Norm. Sup., 32 ( 1999 ). Numdam | Zbl 0934.35036 · Zbl 0934.35036 [16] T. SPENCER , The Schrödinger equation with a random potential-a mathematical review , Les Houches XLIII, K. Osterwalder, R. Stora (eds.) ( 1984 ). Zbl 0655.60050 · Zbl 0655.60050 [17] T. VORONOV , Geometric integration theory on supermanifolds , Mathematical Physics Review, USSR Academy of Sciences, Moscow, 1993 . · Zbl 0839.58014 [18] W. M. WANG , Asymptotic expansion for the density of states of the magnetic Schrödinger operator with a random potential , Commun. Math. Phys. 172, 401-425 ( 1995 ). Article | Zbl 0851.35145 · Zbl 0851.35145 [19] W. M. WANG , Supersymmetry and density of states of the magnetic Schrödinger operator with a random potential revisited , (submitted). · Zbl 0964.35122 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.