×

Feedback anticontrol of discrete chaos. (English) Zbl 0941.93522


MSC:

93C10 Nonlinear systems in control theory
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1109/81.633897
[2] DOI: 10.1142/S0218127493001112 · Zbl 0886.58076
[3] Chen G., IEEE Conf. Decision and Control, San Antonio, TX pp 469– (1993)
[4] DOI: 10.1142/S021812749600076X · Zbl 0875.93157
[5] DOI: 10.1109/81.557372
[6] Chen G., Proc. IEEE Conf. Decison and Control, San Diego, CA pp 367– (1997)
[7] DOI: 10.1016/0016-0032(94)90090-6 · Zbl 0825.93303
[8] DOI: 10.1126/science.1519060
[9] Holzfuss J., Arnold, L., Crauel, H. & Eckmann, J.-P. (1991)
[10] DOI: 10.1103/PhysRevLett.74.4420
[11] DOI: 10.1109/81.246146 · Zbl 0850.93354
[12] DOI: 10.1016/0016-0032(94)90086-8 · Zbl 0825.93304
[13] Oseledec V. I., Trans. Moscow Math. Soc. 19 pp 197– (1968)
[14] DOI: 10.1038/370615a0
[15] DOI: 10.1038/363411a0
[16] DOI: 10.1017/S0140525X00047336
[17] DOI: 10.2307/2974734 · Zbl 0879.58051
[18] Yang W., Phys. Rev. 51 pp 102– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.